 175d3e7eae
			
		
	
	
		175d3e7eae
		
	
	
	
	
		
			
			This allows us to write things like this: message m; m.m_notify.interrupts = new_value; or message *mp; mp->m_notify.interrupts = new_value; The shorthands macro have been adapted for the new scheme, and will be kept as long as we have generic messages being used. Change-Id: Icfd02b5f126892b1d5d2cebe8c8fb02b180000f7
		
			
				
	
	
		
			1357 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1357 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This file contains the device dependent part of the driver for the Floppy
 | |
|  * Disk Controller (FDC) using the NEC PD765 chip.
 | |
|  *
 | |
|  * The file contains two entry points:
 | |
|  *
 | |
|  *   floppy_task:   main entry when system is brought up
 | |
|  *
 | |
|  * Changes:
 | |
|  *   Sep 11, 2005   code cleanup (Andy Tanenbaum)
 | |
|  *   Dec 01, 2004   floppy driver moved to user-space (Jorrit N. Herder)
 | |
|  *   Sep 15, 2004   sync alarms/ local timer management  (Jorrit N. Herder)
 | |
|  *   Aug 12, 2003   null seek no interrupt fix  (Mike Haertel)
 | |
|  *   May 14, 2000   d-d/i rewrite  (Kees J. Bot)
 | |
|  *   Apr 04, 1992   device dependent/independent split  (Kees J. Bot)
 | |
|  *   Mar 27, 1992   last details on density checking  (Kees J. Bot)
 | |
|  *   Feb 14, 1992   check drive density on opens only  (Andy Tanenbaum)
 | |
|  *	     1991   len[] / motors / reset / step rate / ...  (Bruce Evans)
 | |
|  *   May 13, 1991   renovated the errors loop  (Don Chapman)
 | |
|  *           1989   I/O vector to keep up with 1-1 interleave  (Bruce Evans)
 | |
|  *   Jan 06, 1988   allow 1.44 MB diskettes  (Al Crew)
 | |
|  *   Nov 28, 1986   better resetting for 386  (Peter Kay)
 | |
|  *   Oct 27, 1986   fdc_results fixed for 8 MHz  (Jakob Schripsema)
 | |
|  */
 | |
| 
 | |
| #include "floppy.h"
 | |
| #include <minix/timers.h>
 | |
| #include <machine/diskparm.h>
 | |
| #include <minix/sysutil.h>
 | |
| #include <minix/syslib.h>
 | |
| #include <minix/endpoint.h>
 | |
| #include <stdio.h>
 | |
| 
 | |
| /* I/O Ports used by floppy disk task. */
 | |
| #define DOR            0x3F2	/* motor drive control bits */
 | |
| #define FDC_STATUS     0x3F4	/* floppy disk controller status register */
 | |
| #define FDC_DATA       0x3F5	/* floppy disk controller data register */
 | |
| #define FDC_RATE       0x3F7	/* transfer rate register */
 | |
| #define DMA_ADDR       0x004	/* port for low 16 bits of DMA address */
 | |
| #define DMA_TOP        0x081	/* port for top 8 bits of 24-bit DMA addr */
 | |
| #define DMA_COUNT      0x005	/* port for DMA count (count =  bytes - 1) */
 | |
| #define DMA_FLIPFLOP   0x00C	/* DMA byte pointer flip-flop */
 | |
| #define DMA_MODE       0x00B	/* DMA mode port */
 | |
| #define DMA_INIT       0x00A	/* DMA init port */
 | |
| #define DMA_RESET_VAL  0x006
 | |
| 
 | |
| #define DMA_ADDR_MASK  0xFFFFFF	/* mask to verify DMA address is 24-bit */
 | |
| 
 | |
| /* Status registers returned as result of operation. */
 | |
| #define ST0             0x00	/* status register 0 */
 | |
| #define ST1             0x01	/* status register 1 */
 | |
| #define ST2             0x02	/* status register 2 */
 | |
| #define ST3             0x00	/* status register 3 (return by DRIVE_SENSE) */
 | |
| #define ST_CYL          0x03	/* slot where controller reports cylinder */
 | |
| #define ST_HEAD         0x04	/* slot where controller reports head */
 | |
| #define ST_SEC          0x05	/* slot where controller reports sector */
 | |
| #define ST_PCN          0x01	/* slot where controller reports present cyl */
 | |
| 
 | |
| /* Fields within the I/O ports. */
 | |
| /* Main status register. */
 | |
| #define CTL_BUSY        0x10	/* bit is set when read or write in progress */
 | |
| #define DIRECTION       0x40	/* bit is set when reading data reg is valid */
 | |
| #define MASTER          0x80	/* bit is set when data reg can be accessed */
 | |
| 
 | |
| /* Digital output port (DOR). */
 | |
| #define MOTOR_SHIFT        4	/* high 4 bits control the motors in DOR */
 | |
| #define ENABLE_INT      0x0C	/* used for setting DOR port */
 | |
| 
 | |
| /* ST0. */
 | |
| #define ST0_BITS_TRANS  0xD8	/* check 4 bits of status */
 | |
| #define TRANS_ST0       0x00	/* 4 bits of ST0 for READ/WRITE */
 | |
| #define ST0_BITS_SEEK   0xF8	/* check top 5 bits of seek status */
 | |
| #define SEEK_ST0        0x20	/* top 5 bits of ST0 for SEEK */
 | |
| 
 | |
| /* ST1. */
 | |
| #define BAD_SECTOR      0x05	/* if these bits are set in ST1, recalibrate */
 | |
| #define WRITE_PROTECT   0x02	/* bit is set if diskette is write protected */
 | |
| 
 | |
| /* ST2. */
 | |
| #define BAD_CYL         0x1F	/* if any of these bits are set, recalibrate */
 | |
| 
 | |
| /* ST3 (not used). */
 | |
| #define ST3_FAULT       0x80	/* if this bit is set, drive is sick */
 | |
| #define ST3_WR_PROTECT  0x40	/* set when diskette is write protected */
 | |
| #define ST3_READY       0x20	/* set when drive is ready */
 | |
| 
 | |
| /* Floppy disk controller command bytes. */
 | |
| #define FDC_SEEK        0x0F	/* command the drive to seek */
 | |
| #define FDC_READ        0xE6	/* command the drive to read */
 | |
| #define FDC_WRITE       0xC5	/* command the drive to write */
 | |
| #define FDC_SENSE       0x08	/* command the controller to tell its status */
 | |
| #define FDC_RECALIBRATE 0x07	/* command the drive to go to cyl 0 */
 | |
| #define FDC_SPECIFY     0x03	/* command the drive to accept params */
 | |
| #define FDC_READ_ID     0x4A	/* command the drive to read sector identity */
 | |
| #define FDC_FORMAT      0x4D	/* command the drive to format a track */
 | |
| 
 | |
| /* DMA channel commands. */
 | |
| #define DMA_READ        0x46	/* DMA read opcode */
 | |
| #define DMA_WRITE       0x4A	/* DMA write opcode */
 | |
| 
 | |
| /* Parameters for the disk drive. */
 | |
| #define HC_SIZE         2880	/* # sectors on largest legal disk (1.44MB) */
 | |
| #define NR_HEADS        0x02	/* two heads (i.e., two tracks/cylinder) */
 | |
| #define MAX_SECTORS	  18	/* largest # sectors per track */
 | |
| #define DTL             0xFF	/* determines data length (sector size) */
 | |
| #define SPEC2           0x02	/* second parameter to SPECIFY */
 | |
| #define MOTOR_OFF (3*system_hz)	/* how long to wait before stopping motor */
 | |
| #define WAKEUP	  (2*system_hz)	/* timeout on I/O, FDC won't quit. */
 | |
| 
 | |
| /* Error codes */
 | |
| #define ERR_SEEK         (-1)	/* bad seek */
 | |
| #define ERR_TRANSFER     (-2)	/* bad transfer */
 | |
| #define ERR_STATUS       (-3)	/* something wrong when getting status */
 | |
| #define ERR_READ_ID      (-4)	/* bad read id */
 | |
| #define ERR_RECALIBRATE  (-5)	/* recalibrate didn't work properly */
 | |
| #define ERR_DRIVE        (-6)	/* something wrong with a drive */
 | |
| #define ERR_WR_PROTECT   (-7)	/* diskette is write protected */
 | |
| #define ERR_TIMEOUT      (-8)	/* interrupt timeout */
 | |
| 
 | |
| /* No retries on some errors. */
 | |
| #define err_no_retry(err)	((err) <= ERR_WR_PROTECT)
 | |
| 
 | |
| /* Encoding of drive type in minor device number. */
 | |
| #define DEV_TYPE_BITS   0x7C	/* drive type + 1, if nonzero */
 | |
| #define DEV_TYPE_SHIFT     2	/* right shift to normalize type bits */
 | |
| #define FORMAT_DEV_BIT  0x80	/* bit in minor to turn write into format */
 | |
| 
 | |
| /* Miscellaneous. */
 | |
| #define MAX_ERRORS         6	/* how often to try rd/wt before quitting */
 | |
| #define MAX_RESULTS        7	/* max number of bytes controller returns */
 | |
| #define NR_DRIVES          2	/* maximum number of drives */
 | |
| #define DIVISOR          128	/* used for sector size encoding */
 | |
| #define SECTOR_SIZE_CODE   2	/* code to say "512" to the controller */
 | |
| #define TIMEOUT_MICROS   5000000L	/* microseconds waiting for FDC */
 | |
| #define NT                 7	/* number of diskette/drive combinations */
 | |
| #define UNCALIBRATED       0	/* drive needs to be calibrated at next use */
 | |
| #define CALIBRATED         1	/* no calibration needed */
 | |
| #define BASE_SECTOR        1	/* sectors are numbered starting at 1 */
 | |
| #define NO_SECTOR ((unsigned) -1)	/* current sector unknown */
 | |
| #define NO_CYL		 (-1)	/* current cylinder unknown, must seek */
 | |
| #define NO_DENS		 100	/* current media unknown */
 | |
| #define BSY_IDLE	   0	/* busy doing nothing */
 | |
| #define BSY_IO		   1	/* busy doing I/O */
 | |
| #define BSY_WAKEN	   2	/* got a wakeup call */
 | |
| 
 | |
| /* Seven combinations of diskette/drive are supported.
 | |
|  *
 | |
|  * # Diskette Drive  Sectors  Tracks   Rotation Data-rate  Comment
 | |
|  * 0   360K    360K     9       40     300 RPM  250 kbps   Standard PC DSDD
 | |
|  * 1   1.2M    1.2M    15       80     360 RPM  500 kbps   AT disk in AT drive
 | |
|  * 2   360K    720K     9       40     300 RPM  250 kbps   Quad density PC
 | |
|  * 3   720K    720K     9       80     300 RPM  250 kbps   Toshiba, et al.
 | |
|  * 4   360K    1.2M     9       40     360 RPM  300 kbps   PC disk in AT drive
 | |
|  * 5   720K    1.2M     9       80     360 RPM  300 kbps   Toshiba in AT drive
 | |
|  * 6   1.44M   1.44M   18	80     300 RPM  500 kbps   PS/2, et al.
 | |
|  *
 | |
|  * In addition, 720K diskettes can be read in 1.44MB drives, but that does
 | |
|  * not need a different set of parameters.  This combination uses
 | |
|  *
 | |
|  * 3   720K    1.44M    9       80     300 RPM  250 kbps   PS/2, et al.
 | |
|  */
 | |
| static struct density {
 | |
| 	u8_t	secpt;		/* sectors per track */
 | |
| 	u8_t	cyls;		/* tracks per side */
 | |
| 	u8_t	steps;		/* steps per cylinder (2 = double step) */
 | |
| 	u8_t	test;		/* sector to try for density test */
 | |
| 	u8_t	rate;		/* data rate (2=250, 1=300, 0=500 kbps) */
 | |
| 	clock_t	start_ms;	/* motor start (milliseconds) */
 | |
| 	u8_t	gap;		/* gap size */
 | |
| 	u8_t	spec1;		/* first specify byte (SRT/HUT) */
 | |
| } fdensity[NT] = {
 | |
| 	{  9, 40, 1, 4*9, 2, 500, 0x2A, 0xDF },	/*  360K / 360K  */
 | |
| 	{ 15, 80, 1,  14, 0, 500, 0x1B, 0xDF },	/*  1.2M / 1.2M  */
 | |
| 	{  9, 40, 2, 2*9, 2, 500, 0x2A, 0xDF },	/*  360K / 720K  */
 | |
| 	{  9, 80, 1, 4*9, 2, 750, 0x2A, 0xDF },	/*  720K / 720K  */
 | |
| 	{  9, 40, 2, 2*9, 1, 500, 0x23, 0xDF },	/*  360K / 1.2M  */
 | |
| 	{  9, 80, 1, 4*9, 1, 500, 0x23, 0xDF },	/*  720K / 1.2M  */
 | |
| 	{ 18, 80, 1,  17, 0, 750, 0x1B, 0xCF },	/* 1.44M / 1.44M */
 | |
| };
 | |
| 
 | |
| /* The following table is used with the test_sector array to recognize a
 | |
|  * drive/floppy combination.  The sector to test has been determined by
 | |
|  * looking at the differences in gap size, sectors/track, and double stepping.
 | |
|  * This means that types 0 and 3 can't be told apart, only the motor start
 | |
|  * time differs.  If a read test succeeds then the drive is limited to the
 | |
|  * set of densities it can support to avoid unnecessary tests in the future.
 | |
|  */
 | |
| 
 | |
| #define b(d)	(1 << (d))	/* bit for density d. */
 | |
| 
 | |
| static struct test_order {
 | |
| 	u8_t	t_density;	/* floppy/drive type */
 | |
| 	u8_t	t_class;	/* limit drive to this class of densities */
 | |
| } test_order[NT-1] = {
 | |
| 	{ 6,  b(3) | b(6) },		/* 1.44M  {720K, 1.44M} */
 | |
| 	{ 1,  b(1) | b(4) | b(5) },	/* 1.2M   {1.2M, 360K, 720K} */
 | |
| 	{ 3,  b(2) | b(3) | b(6) },	/* 720K   {360K, 720K, 1.44M} */
 | |
| 	{ 4,  b(1) | b(4) | b(5) },	/* 360K   {1.2M, 360K, 720K} */
 | |
| 	{ 5,  b(1) | b(4) | b(5) },	/* 720K   {1.2M, 360K, 720K} */
 | |
| 	{ 2,  b(2) | b(3) },		/* 360K   {360K, 720K} */
 | |
| 	/* Note that type 0 is missing, type 3 can read/write it too, which is
 | |
| 	 * why the type 3 parameters have been pessimized to be like type 0.
 | |
| 	 */
 | |
| };
 | |
| 
 | |
| /* Variables. */
 | |
| static struct floppy {		/* main drive struct, one entry per drive */
 | |
|   unsigned fl_curcyl;		/* current cylinder */
 | |
|   unsigned fl_hardcyl;		/* hardware cylinder, as opposed to: */
 | |
|   unsigned fl_cylinder;		/* cylinder number addressed */
 | |
|   unsigned fl_sector;		/* sector addressed */
 | |
|   unsigned fl_head;		/* head number addressed */
 | |
|   char fl_calibration;		/* CALIBRATED or UNCALIBRATED */
 | |
|   u8_t fl_density;		/* NO_DENS = ?, 0 = 360K; 1 = 360K/1.2M; etc.*/
 | |
|   u8_t fl_class;		/* bitmap for possible densities */
 | |
|   minix_timer_t fl_tmr_stop;		/* timer to stop motor */
 | |
|   struct device fl_geom;	/* Geometry of the drive */
 | |
|   struct device fl_part[NR_PARTITIONS];  /* partition's base & size */
 | |
| } floppy[NR_DRIVES];
 | |
| 
 | |
| static int irq_hook_id;	/* id of irq hook at the kernel */
 | |
| int motor_status;	/* bitmap of current motor status */
 | |
| static int need_reset;		/* set to 1 when controller must be reset */
 | |
| unsigned f_drive;	/* selected drive */
 | |
| static unsigned f_device;	/* selected minor device */
 | |
| static struct floppy *f_fp;	/* current drive */
 | |
| static struct density *f_dp;	/* current density parameters */
 | |
| static struct density *prev_dp;/* previous density parameters */
 | |
| static unsigned f_sectors;	/* equal to f_dp->secpt (needed a lot) */
 | |
| u16_t f_busy;		/* BSY_IDLE, BSY_IO, BSY_WAKEN */
 | |
| static struct device *f_dv;	/* device's base and size */
 | |
| static struct disk_parameter_s fmt_param; /* parameters for format */
 | |
| static u8_t f_results[MAX_RESULTS];/* the controller can give lots of output */
 | |
| 
 | |
| /* The floppy uses various timers. These are managed by the floppy driver
 | |
|  * itself, because only a single synchronous alarm is available per process.
 | |
|  * Besides the 'f_tmr_timeout' timer below, the floppy structure for each
 | |
|  * floppy disk drive contains a 'fl_tmr_stop' timer. 
 | |
|  */
 | |
| static minix_timer_t f_tmr_timeout;		/* timer for various timeouts */
 | |
| static u32_t system_hz;		/* system clock frequency */
 | |
| static void f_expire_tmrs(clock_t stamp);
 | |
| static void stop_motor(minix_timer_t *tp);
 | |
| static void f_timeout(minix_timer_t *tp);
 | |
| 
 | |
| static struct device *f_prepare(devminor_t device);
 | |
| static struct device *f_part(devminor_t minor);
 | |
| static void f_cleanup(void);
 | |
| static ssize_t f_transfer(devminor_t minor, int do_write, u64_t position,
 | |
| 	endpoint_t proc_nr, iovec_t *iov, unsigned int nr_req, int flags);
 | |
| static int dma_setup(int do_write);
 | |
| static void start_motor(void);
 | |
| static int seek(void);
 | |
| static int fdc_transfer(int do_write);
 | |
| static int fdc_results(void);
 | |
| static int fdc_command(const u8_t *cmd, int len);
 | |
| static void fdc_out(int val);
 | |
| static int recalibrate(void);
 | |
| static void f_reset(void);
 | |
| static int f_intr_wait(void);
 | |
| static int read_id(void);
 | |
| static int f_do_open(devminor_t minor, int access);
 | |
| static int f_do_close(devminor_t minor);
 | |
| static int test_read(int density);
 | |
| static void f_geometry(devminor_t minor, struct part_geom *entry);
 | |
| 
 | |
| /* Entry points to this driver. */
 | |
| static struct blockdriver f_dtab = {
 | |
|   .bdr_type	= BLOCKDRIVER_TYPE_DISK,	/* handle partition requests */
 | |
|   .bdr_open	= f_do_open,	/* open request, sense type of diskette */
 | |
|   .bdr_close	= f_do_close,	/* nothing on a close */
 | |
|   .bdr_transfer	= f_transfer,	/* do the I/O */
 | |
|   .bdr_cleanup	= f_cleanup,	/* cleanup before sending reply to caller */
 | |
|   .bdr_part	= f_part,	/* return partition information structure */
 | |
|   .bdr_geometry	= f_geometry,	/* tell the geometry of the diskette */
 | |
|   .bdr_alarm	= f_expire_tmrs /* expire all alarm timers */
 | |
| };
 | |
| 
 | |
| static char *floppy_buf;
 | |
| static phys_bytes floppy_buf_phys;
 | |
| 
 | |
| /* SEF functions and variables. */
 | |
| static void sef_local_startup(void);
 | |
| static int sef_cb_init_fresh(int type, sef_init_info_t *info);
 | |
| static void sef_cb_signal_handler(int signo);
 | |
| EXTERN int sef_cb_lu_prepare(int state);
 | |
| EXTERN int sef_cb_lu_state_isvalid(int state);
 | |
| EXTERN void sef_cb_lu_state_dump(int state);
 | |
| int last_was_write;
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				floppy_task				     *
 | |
|  *===========================================================================*/
 | |
| int main(void)
 | |
| {
 | |
|   /* SEF local startup. */
 | |
|   sef_local_startup();
 | |
| 
 | |
|   /* Call the generic receive loop. */
 | |
|   blockdriver_task(&f_dtab);
 | |
| 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *			       sef_local_startup			     *
 | |
|  *===========================================================================*/
 | |
| static void sef_local_startup(void)
 | |
| {
 | |
|   /* Register init callbacks. */
 | |
|   sef_setcb_init_fresh(sef_cb_init_fresh);
 | |
|   sef_setcb_init_lu(sef_cb_init_fresh);
 | |
| 
 | |
|   /* Register live update callbacks. */
 | |
|   sef_setcb_lu_prepare(sef_cb_lu_prepare);
 | |
|   sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid);
 | |
|   sef_setcb_lu_state_dump(sef_cb_lu_state_dump);
 | |
| 
 | |
|   /* Register signal callbacks. */
 | |
|   sef_setcb_signal_handler(sef_cb_signal_handler);
 | |
| 
 | |
|   /* Let SEF perform startup. */
 | |
|   sef_startup();
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *		            sef_cb_init_fresh                                *
 | |
|  *===========================================================================*/
 | |
| static int sef_cb_init_fresh(int type, sef_init_info_t *UNUSED(info))
 | |
| {
 | |
| /* Initialize the floppy driver. */
 | |
|   struct floppy *fp;
 | |
|   int s;
 | |
| 
 | |
|   /* Initialize the floppy structure and the timers. */
 | |
|   system_hz = sys_hz();
 | |
| 
 | |
|   if(!(floppy_buf = alloc_contig(2*DMA_BUF_SIZE,
 | |
| 	AC_LOWER16M | AC_ALIGN4K, &floppy_buf_phys)))
 | |
|   	panic("couldn't allocate dma buffer");
 | |
| 
 | |
|   init_timer(&f_tmr_timeout);
 | |
| 
 | |
|   for (fp = &floppy[0]; fp < &floppy[NR_DRIVES]; fp++) {
 | |
| 	fp->fl_curcyl = NO_CYL;
 | |
| 	fp->fl_density = NO_DENS;
 | |
| 	fp->fl_class = ~0;
 | |
| 	init_timer(&fp->fl_tmr_stop);
 | |
|   }
 | |
| 
 | |
|   /* Set IRQ policy, only request notifications, do not automatically 
 | |
|    * reenable interrupts. ID return on interrupt is the IRQ line number. 
 | |
|    */
 | |
|   irq_hook_id = FLOPPY_IRQ;
 | |
|   if ((s=sys_irqsetpolicy(FLOPPY_IRQ, 0, &irq_hook_id )) != OK)
 | |
|   	panic("Couldn't set IRQ policy: %d", s);
 | |
|   if ((s=sys_irqenable(&irq_hook_id)) != OK)
 | |
|   	panic("Couldn't enable IRQs: %d", s);
 | |
| 
 | |
|   /* Announce we are up! */
 | |
|   blockdriver_announce(type);
 | |
| 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *		           sef_cb_signal_handler                             *
 | |
|  *===========================================================================*/
 | |
| static void sef_cb_signal_handler(int signo)
 | |
| {
 | |
|   int s;
 | |
| 
 | |
|   /* Only check for termination signal, ignore anything else. */
 | |
|   if (signo != SIGTERM) return;
 | |
| 
 | |
|   /* Stop all activity and cleanly exit with the system. */
 | |
|   if ((s=sys_outb(DOR, ENABLE_INT)) != OK)
 | |
|       panic("Sys_outb failed: %d", s);
 | |
|   exit(0);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_expire_tmrs				     *
 | |
|  *===========================================================================*/
 | |
| static void f_expire_tmrs(clock_t stamp)
 | |
| {
 | |
| /* A synchronous alarm message was received. Call the watchdog function for
 | |
|  * each expired timer, if any.
 | |
|  */
 | |
| 
 | |
|   expire_timers(stamp);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_prepare				     *
 | |
|  *===========================================================================*/
 | |
| static struct device *f_prepare(devminor_t device)
 | |
| {
 | |
| /* Prepare for I/O on a device. */
 | |
| 
 | |
|   f_device = device;
 | |
|   f_drive = device & ~(DEV_TYPE_BITS | FORMAT_DEV_BIT);
 | |
|   if (device < 0 || f_drive >= NR_DRIVES) return(NULL);
 | |
| 
 | |
|   f_fp = &floppy[f_drive];
 | |
|   f_dv = &f_fp->fl_geom;
 | |
|   if (f_fp->fl_density < NT) {
 | |
| 	f_dp = &fdensity[f_fp->fl_density];
 | |
| 	f_sectors = f_dp->secpt;
 | |
| 	f_fp->fl_geom.dv_size = (u64_t)(NR_HEADS * f_sectors * f_dp->cyls) * 
 | |
| 								SECTOR_SIZE;
 | |
|   }
 | |
| 
 | |
|   /* A partition? */
 | |
|   if ((device &= DEV_TYPE_BITS) >= MINOR_fd0p0)
 | |
| 	f_dv = &f_fp->fl_part[(device - MINOR_fd0p0) >> DEV_TYPE_SHIFT];
 | |
| 
 | |
|   return f_dv;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_part					     *
 | |
|  *===========================================================================*/
 | |
| static struct device *f_part(devminor_t minor)
 | |
| {
 | |
| /* Return a pointer to the partition information of the given minor device. */
 | |
| 
 | |
|   return f_prepare(minor);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_cleanup				     *
 | |
|  *===========================================================================*/
 | |
| static void f_cleanup(void)
 | |
| {
 | |
|   /* Start a timer to turn the motor off in a few seconds. */
 | |
|   set_timer(&f_fp->fl_tmr_stop, MOTOR_OFF, stop_motor, f_drive);
 | |
| 
 | |
|   /* Exiting the floppy driver, so forget where we are. */
 | |
|   f_fp->fl_sector = NO_SECTOR;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_transfer				     *
 | |
|  *===========================================================================*/
 | |
| static ssize_t f_transfer(
 | |
|   devminor_t minor,		/* minor device number */
 | |
|   int do_write,			/* read or write? */
 | |
|   u64_t pos64,			/* offset on device to read or write */
 | |
|   endpoint_t proc_nr,		/* process doing the request */
 | |
|   iovec_t *iov,			/* pointer to read or write request vector */
 | |
|   unsigned int nr_req,		/* length of request vector */
 | |
|   int UNUSED(flags)		/* transfer flags */
 | |
| )
 | |
| {
 | |
| #define NO_OFFSET -1
 | |
|   struct floppy *fp;
 | |
|   iovec_t *iop, *iov_end = iov + nr_req;
 | |
|   int s, r, errors, nr;
 | |
|   unsigned block, nbytes, count, chunk, sector;
 | |
|   u64_t dv_size;
 | |
|   vir_bytes user_offset, iov_offset = 0, iop_offset;
 | |
|   unsigned long position;
 | |
|   signed long uoffsets[MAX_SECTORS], *up;
 | |
|   cp_grant_id_t ugrants[MAX_SECTORS], *ug = NULL;
 | |
|   u8_t cmd[3];
 | |
|   ssize_t total;
 | |
| 
 | |
|   if (f_prepare(minor) == NULL) return(ENXIO);
 | |
| 
 | |
|   fp = f_fp;
 | |
|   dv_size = f_dv->dv_size;
 | |
| 
 | |
|   if (ex64hi(pos64) != 0)
 | |
| 	return OK;	/* Way beyond EOF */
 | |
|   position= pos64;
 | |
|   total = 0;
 | |
| 
 | |
|   /* Record the direction of the last transfer performed. */
 | |
|   last_was_write = do_write;
 | |
| 
 | |
|   /* Check disk address. */
 | |
|   if ((position & SECTOR_MASK) != 0) return(EINVAL);
 | |
| 
 | |
| #if 0	/* XXX hack to create a disk driver that crashes */
 | |
|   { static int count= 0; if (++count > 10) {
 | |
| 	printf("floppy: time to die\n"); *(int *)-1= 42;
 | |
|   }}
 | |
| #endif
 | |
| 
 | |
|   errors = 0;
 | |
|   while (nr_req > 0) {
 | |
| 	/* How many bytes to transfer? */
 | |
| 	nbytes = 0;
 | |
| 	for (iop = iov; iop < iov_end; iop++) nbytes += iop->iov_size;
 | |
| 
 | |
| 	/* Which block on disk and how close to EOF? */
 | |
| 	if (position >= dv_size) return(total);		/* At EOF */
 | |
| 	if (position + nbytes > dv_size) nbytes = dv_size - position;
 | |
| 	block = (unsigned long)((f_dv->dv_base + position) / SECTOR_SIZE);
 | |
| 
 | |
| 	if ((nbytes & SECTOR_MASK) != 0) return(EINVAL);
 | |
| 
 | |
| 	/* Using a formatting device? */
 | |
| 	if (f_device & FORMAT_DEV_BIT) {
 | |
| 		if (!do_write) return(EIO);
 | |
| 		if (iov->iov_size < SECTOR_SIZE + sizeof(fmt_param))
 | |
| 			return(EINVAL);
 | |
| 
 | |
| 		if(proc_nr != SELF) {
 | |
| 		   s=sys_safecopyfrom(proc_nr, iov->iov_addr,
 | |
| 			SECTOR_SIZE + iov_offset, (vir_bytes) &fmt_param,
 | |
| 			(phys_bytes) sizeof(fmt_param));
 | |
| 		   if(s != OK)
 | |
| 			panic("sys_safecopyfrom failed: %d", s);
 | |
| 		} else {
 | |
| 			memcpy(&fmt_param, (void *) (iov->iov_addr +
 | |
| 				SECTOR_SIZE + iov_offset),
 | |
| 				(phys_bytes) sizeof(fmt_param));
 | |
| 		}
 | |
| 
 | |
| 		/* Check that the number of sectors in the data is reasonable,
 | |
| 		 * to avoid division by 0.  Leave checking of other data to
 | |
| 		 * the FDC.
 | |
| 		 */
 | |
| 		if (fmt_param.sectors_per_cylinder == 0) return(EIO);
 | |
| 
 | |
| 		/* Only the first sector of the parameters now needed. */
 | |
| 		iov->iov_size = nbytes = SECTOR_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* Only try one sector if there were errors. */
 | |
| 	if (errors > 0) nbytes = SECTOR_SIZE;
 | |
| 
 | |
| 	/* Compute cylinder and head of the track to access. */
 | |
| 	fp->fl_cylinder = block / (NR_HEADS * f_sectors);
 | |
| 	fp->fl_hardcyl = fp->fl_cylinder * f_dp->steps;
 | |
| 	fp->fl_head = (block % (NR_HEADS * f_sectors)) / f_sectors;
 | |
| 
 | |
| 	/* For each sector on this track compute the user address it is to
 | |
| 	 * go or to come from.
 | |
| 	 */
 | |
| 	for (up = uoffsets; up < uoffsets + MAX_SECTORS; up++) *up = NO_OFFSET;
 | |
| 	count = 0;
 | |
| 	iop = iov;
 | |
| 	sector = block % f_sectors;
 | |
| 	nr = 0;
 | |
| 	iop_offset = iov_offset;
 | |
| 	for (;;) {
 | |
| 		nr++;
 | |
| 		user_offset = iop_offset;
 | |
| 		chunk = iop->iov_size;
 | |
| 		if ((chunk & SECTOR_MASK) != 0) return(EINVAL);
 | |
| 
 | |
| 		while (chunk > 0) {
 | |
| 			ugrants[sector] = iop->iov_addr;
 | |
| 			uoffsets[sector++] = user_offset;
 | |
| 			chunk -= SECTOR_SIZE;
 | |
| 			user_offset += SECTOR_SIZE;
 | |
| 			count += SECTOR_SIZE;
 | |
| 			if (sector == f_sectors || count == nbytes)
 | |
| 				goto track_set_up;
 | |
| 		}
 | |
| 		iop_offset = 0;
 | |
| 		iop++;
 | |
| 	}
 | |
|   track_set_up:
 | |
| 
 | |
| 	/* First check to see if a reset is needed. */
 | |
| 	if (need_reset) f_reset();
 | |
| 
 | |
| 	/* See if motor is running; if not, turn it on and wait. */
 | |
| 	start_motor();
 | |
| 
 | |
| 	/* Set the stepping rate and data rate */
 | |
| 	if (f_dp != prev_dp) {
 | |
| 		cmd[0] = FDC_SPECIFY;
 | |
| 		cmd[1] = f_dp->spec1;
 | |
| 		cmd[2] = SPEC2;
 | |
| 		(void) fdc_command(cmd, 3);
 | |
| 		if ((s=sys_outb(FDC_RATE, f_dp->rate)) != OK)
 | |
| 			panic("Sys_outb failed: %d", s);
 | |
| 		prev_dp = f_dp;
 | |
| 	}
 | |
| 
 | |
| 	/* If we are going to a new cylinder, perform a seek. */
 | |
| 	r = seek();
 | |
| 
 | |
| 	/* Avoid read_id() if we don't plan to read much. */
 | |
| 	if (fp->fl_sector == NO_SECTOR && count < (6 * SECTOR_SIZE))
 | |
| 		fp->fl_sector = 0;
 | |
| 
 | |
| 	for (nbytes = 0; nbytes < count; nbytes += SECTOR_SIZE) {
 | |
| 		if (fp->fl_sector == NO_SECTOR) {
 | |
| 			/* Find out what the current sector is.  This often
 | |
| 			 * fails right after a seek, so try it twice.
 | |
| 			 */
 | |
| 			if (r == OK && read_id() != OK) r = read_id();
 | |
| 		}
 | |
| 
 | |
| 		/* Look for the next job in uoffsets[] */
 | |
| 		if (r == OK) {
 | |
| 			for (;;) {
 | |
| 				if (fp->fl_sector >= f_sectors)
 | |
| 					fp->fl_sector = 0;
 | |
| 
 | |
| 				up = &uoffsets[fp->fl_sector];
 | |
| 				ug = &ugrants[fp->fl_sector];
 | |
| 				if (*up != NO_OFFSET) break;
 | |
| 				fp->fl_sector++;
 | |
| 			}
 | |
| 
 | |
| 			if (do_write) {
 | |
| 				/* Copy the user bytes to the DMA buffer. */
 | |
| 				if(proc_nr != SELF) {
 | |
| 				   s=sys_safecopyfrom(proc_nr, *ug, *up,
 | |
| 					(vir_bytes) floppy_buf,
 | |
| 					 (phys_bytes) SECTOR_SIZE);
 | |
| 				   if(s != OK)
 | |
| 					panic("sys_safecopyfrom failed: %d", s);
 | |
| 				} else {
 | |
| 				   memcpy(floppy_buf, (void *) (*ug + *up), SECTOR_SIZE);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Set up the DMA chip and perform the transfer. */
 | |
| 		if (r == OK) {
 | |
| 			if (dma_setup(do_write) != OK) {
 | |
| 				/* This can only fail for addresses above 16MB
 | |
| 				 * that cannot be handled by the controller, 
 | |
|  				 * because it uses 24-bit addressing.
 | |
| 				 */
 | |
| 				return(EIO);
 | |
| 			}
 | |
| 			r = fdc_transfer(do_write);
 | |
| 		}
 | |
| 
 | |
| 		if (r == OK && !do_write) {
 | |
| 			/* Copy the DMA buffer to user space. */
 | |
| 			if(proc_nr != SELF) {
 | |
| 		   	   s=sys_safecopyto(proc_nr, *ug, *up,
 | |
| 				(vir_bytes) floppy_buf,
 | |
| 			  	 (phys_bytes) SECTOR_SIZE);
 | |
| 			if(s != OK)
 | |
| 				panic("sys_safecopyto failed: %d", s);
 | |
| 			} else {
 | |
| 			   memcpy((void *) (*ug + *up), floppy_buf, SECTOR_SIZE);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (r != OK) {
 | |
| 			/* Don't retry if write protected or too many errors. */
 | |
| 			if (err_no_retry(r) || ++errors == MAX_ERRORS) {
 | |
| 				return(EIO);
 | |
| 			}
 | |
| 
 | |
| 			/* Recalibrate if halfway. */
 | |
| 			if (errors == MAX_ERRORS / 2)
 | |
| 				fp->fl_calibration = UNCALIBRATED;
 | |
| 
 | |
| 			nbytes = 0;
 | |
| 			break;		/* retry */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Book the bytes successfully transferred. */
 | |
| 	position += nbytes;
 | |
| 	total += nbytes;
 | |
| 	while (nbytes > 0) {
 | |
| 		if (nbytes < iov->iov_size) {
 | |
| 			/* Not done with this one yet. */
 | |
| 			iov_offset += nbytes;
 | |
| 			iov->iov_size -= nbytes;
 | |
| 			break;
 | |
| 		}
 | |
| 		iov_offset = 0;
 | |
| 		nbytes -= iov->iov_size;
 | |
| 		iov->iov_size = 0;
 | |
| 		iov++;
 | |
| 		nr_req--;
 | |
| 	}
 | |
|   }
 | |
|   return(total);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				dma_setup				     *
 | |
|  *===========================================================================*/
 | |
| static int dma_setup(int do_write)
 | |
| {
 | |
| /* The IBM PC can perform DMA operations by using the DMA chip.  To use it,
 | |
|  * the DMA (Direct Memory Access) chip is loaded with the 20-bit memory address
 | |
|  * to be read from or written to, the byte count minus 1, and a read or write
 | |
|  * opcode.  This routine sets up the DMA chip.  Note that the chip is not
 | |
|  * capable of doing a DMA across a 64K boundary (e.g., you can't read a
 | |
|  * 512-byte block starting at physical address 65520).
 | |
|  *
 | |
|  * Warning! Also note that it's not possible to do DMA above 16 MB because 
 | |
|  * the ISA bus uses 24-bit addresses. Addresses above 16 MB therefore will 
 | |
|  * be interpreted modulo 16 MB, dangerously overwriting arbitrary memory. 
 | |
|  * A check here denies the I/O if the address is out of range. 
 | |
|  */
 | |
|   pvb_pair_t byte_out[9];
 | |
|   int s;
 | |
| 
 | |
|   /* First check the DMA memory address not to exceed maximum. */
 | |
|   if (floppy_buf_phys != (floppy_buf_phys & DMA_ADDR_MASK)) {
 | |
| 	printf("floppy: DMA denied because address out of range\n");
 | |
| 	return(EIO);
 | |
|   }
 | |
| 
 | |
|   /* Set up the DMA registers.  (The comment on the reset is a bit strong,
 | |
|    * it probably only resets the floppy channel.)
 | |
|    */
 | |
|   pv_set(byte_out[0], DMA_INIT, DMA_RESET_VAL);	/* reset the dma controller */
 | |
|   pv_set(byte_out[1], DMA_FLIPFLOP, 0);		/* write anything to reset it */
 | |
|   pv_set(byte_out[2], DMA_MODE, do_write ? DMA_WRITE : DMA_READ);
 | |
|   pv_set(byte_out[3], DMA_ADDR, (unsigned) (floppy_buf_phys >>  0) & 0xff);
 | |
|   pv_set(byte_out[4], DMA_ADDR, (unsigned) (floppy_buf_phys >>  8) & 0xff);
 | |
|   pv_set(byte_out[5], DMA_TOP,  (unsigned) (floppy_buf_phys >> 16) & 0xff);
 | |
|   pv_set(byte_out[6], DMA_COUNT, (((SECTOR_SIZE - 1) >> 0)) & 0xff);
 | |
|   pv_set(byte_out[7], DMA_COUNT, (SECTOR_SIZE - 1) >> 8);
 | |
|   pv_set(byte_out[8], DMA_INIT, 2);		/* some sort of enable */
 | |
| 
 | |
|   if ((s=sys_voutb(byte_out, 9)) != OK)
 | |
|   	panic("Sys_voutb in dma_setup() failed: %d", s);
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				start_motor				     *
 | |
|  *===========================================================================*/
 | |
| static void start_motor(void)
 | |
| {
 | |
| /* Control of the floppy disk motors is a big pain.  If a motor is off, you
 | |
|  * have to turn it on first, which takes 1/2 second.  You can't leave it on
 | |
|  * all the time, since that would wear out the diskette.  However, if you turn
 | |
|  * the motor off after each operation, the system performance will be awful.
 | |
|  * The compromise used here is to leave it on for a few seconds after each
 | |
|  * operation.  If a new operation is started in that interval, it need not be
 | |
|  * turned on again.  If no new operation is started, a timer goes off and the
 | |
|  * motor is turned off.  I/O port DOR has bits to control each of 4 drives.
 | |
|  */
 | |
| 
 | |
|   int s, motor_bit, running;
 | |
|   message mess;
 | |
|   int ipc_status;
 | |
| 
 | |
|   motor_bit = 1 << f_drive;		/* bit mask for this drive */
 | |
|   running = motor_status & motor_bit;	/* nonzero if this motor is running */
 | |
|   motor_status |= motor_bit;		/* want this drive running too */
 | |
| 
 | |
|   if ((s=sys_outb(DOR,
 | |
|   		(motor_status << MOTOR_SHIFT) | ENABLE_INT | f_drive)) != OK)
 | |
| 	panic("Sys_outb in start_motor() failed: %d", s);
 | |
| 
 | |
|   /* If the motor was already running, we don't have to wait for it. */
 | |
|   if (running) return;			/* motor was already running */
 | |
| 
 | |
|   /* Set an alarm timer to force a timeout if the hardware does not interrupt
 | |
|    * in time. Expect an interrupt, but check for a timeout.
 | |
|    */ 
 | |
|   set_timer(&f_tmr_timeout, f_dp->start_ms * system_hz / 1000, f_timeout, 0);
 | |
|   f_busy = BSY_IO;
 | |
|   do {
 | |
| 	if ((s = driver_receive(ANY, &mess, &ipc_status)) != OK)
 | |
| 		panic("Couldn't receive message: %d", s);
 | |
| 
 | |
| 	if (is_ipc_notify(ipc_status)) {
 | |
| 		switch (_ENDPOINT_P(mess.m_source)) {
 | |
| 			case CLOCK:
 | |
| 				f_expire_tmrs(mess.m_notify.timestamp);
 | |
| 				break;
 | |
| 			default :
 | |
| 				f_busy = BSY_IDLE;
 | |
| 				break;
 | |
| 		}
 | |
|   	} else {
 | |
|   		f_busy = BSY_IDLE;
 | |
|   	}
 | |
|   } while (f_busy == BSY_IO);
 | |
|   f_fp->fl_sector = NO_SECTOR;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				stop_motor				     *
 | |
|  *===========================================================================*/
 | |
| static void stop_motor(minix_timer_t *tp)
 | |
| {
 | |
| /* This routine is called from an alarm timer after several seconds have
 | |
|  * elapsed with no floppy disk activity.  It turns the drive motor off.
 | |
|  */
 | |
|   int s;
 | |
|   motor_status &= ~(1 << tmr_arg(tp)->ta_int);
 | |
|   if ((s=sys_outb(DOR, (motor_status << MOTOR_SHIFT) | ENABLE_INT)) != OK)
 | |
| 	panic("Sys_outb in stop_motor() failed: %d", s);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				seek					     *
 | |
|  *===========================================================================*/
 | |
| static int seek(void)
 | |
| {
 | |
| /* Issue a SEEK command on the indicated drive unless the arm is already
 | |
|  * positioned on the correct cylinder.
 | |
|  */
 | |
| 
 | |
|   struct floppy *fp = f_fp;
 | |
|   int r;
 | |
|   message mess;
 | |
|   int ipc_status;
 | |
|   u8_t cmd[3];
 | |
| 
 | |
|   /* Are we already on the correct cylinder? */
 | |
|   if (fp->fl_calibration == UNCALIBRATED)
 | |
| 	if (recalibrate() != OK) return(ERR_SEEK);
 | |
|   if (fp->fl_curcyl == fp->fl_hardcyl) return(OK);
 | |
| 
 | |
|   /* No.  Wrong cylinder.  Issue a SEEK and wait for interrupt. */
 | |
|   cmd[0] = FDC_SEEK;
 | |
|   cmd[1] = (fp->fl_head << 2) | f_drive;
 | |
|   cmd[2] = fp->fl_hardcyl;
 | |
|   if (fdc_command(cmd, 3) != OK) return(ERR_SEEK);
 | |
|   if (f_intr_wait() != OK) return(ERR_TIMEOUT);
 | |
| 
 | |
|   /* Interrupt has been received.  Check drive status. */
 | |
|   fdc_out(FDC_SENSE);		/* probe FDC to make it return status */
 | |
|   r = fdc_results();		/* get controller status bytes */
 | |
|   if (r != OK || (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0
 | |
| 				|| f_results[ST1] != fp->fl_hardcyl) {
 | |
| 	/* seek failed, may need a recalibrate */
 | |
| 	return(ERR_SEEK);
 | |
|   }
 | |
|   /* Give head time to settle on a format, no retrying here! */
 | |
|   if (f_device & FORMAT_DEV_BIT) {
 | |
| 	/* Set a synchronous alarm to force a timeout if the hardware does
 | |
| 	 * not interrupt.
 | |
|  	 */ 
 | |
|  	set_timer(&f_tmr_timeout, system_hz/30, f_timeout, 0);
 | |
| 	f_busy = BSY_IO;
 | |
|   	do {
 | |
| 		if ((r = driver_receive(ANY, &mess, &ipc_status)) != OK)
 | |
| 			panic("Couldn't receive message: %d", r);
 | |
| 
 | |
| 		if (is_ipc_notify(ipc_status)) {
 | |
| 			switch (_ENDPOINT_P(mess.m_source)) {
 | |
| 				case CLOCK:
 | |
| 					f_expire_tmrs(mess.m_notify.timestamp);
 | |
| 					break;
 | |
| 				default :
 | |
| 					f_busy = BSY_IDLE;
 | |
| 					break;
 | |
| 			}
 | |
|   		} else {
 | |
|   			f_busy = BSY_IDLE;
 | |
|   		}
 | |
|   	} while (f_busy == BSY_IO);
 | |
|   }
 | |
|   fp->fl_curcyl = fp->fl_hardcyl;
 | |
|   fp->fl_sector = NO_SECTOR;
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				fdc_transfer				     *
 | |
|  *===========================================================================*/
 | |
| static int fdc_transfer(int do_write)
 | |
| {
 | |
| /* The drive is now on the proper cylinder.  Read, write or format 1 block. */
 | |
| 
 | |
|   struct floppy *fp = f_fp;
 | |
|   int r, s;
 | |
|   u8_t cmd[9];
 | |
| 
 | |
|   /* Never attempt a transfer if the drive is uncalibrated or motor is off. */
 | |
|   if (fp->fl_calibration == UNCALIBRATED) return(ERR_TRANSFER);
 | |
|   if ((motor_status & (1 << f_drive)) == 0) return(ERR_TRANSFER);
 | |
| 
 | |
|   /* The command is issued by outputting several bytes to the controller chip.
 | |
|    */
 | |
|   if (f_device & FORMAT_DEV_BIT) {
 | |
| 	cmd[0] = FDC_FORMAT;
 | |
| 	cmd[1] = (fp->fl_head << 2) | f_drive;
 | |
| 	cmd[2] = fmt_param.sector_size_code;
 | |
| 	cmd[3] = fmt_param.sectors_per_cylinder;
 | |
| 	cmd[4] = fmt_param.gap_length_for_format;
 | |
| 	cmd[5] = fmt_param.fill_byte_for_format;
 | |
| 	if (fdc_command(cmd, 6) != OK) return(ERR_TRANSFER);
 | |
|   } else {
 | |
| 	cmd[0] = do_write ? FDC_WRITE : FDC_READ;
 | |
| 	cmd[1] = (fp->fl_head << 2) | f_drive;
 | |
| 	cmd[2] = fp->fl_cylinder;
 | |
| 	cmd[3] = fp->fl_head;
 | |
| 	cmd[4] = BASE_SECTOR + fp->fl_sector;
 | |
| 	cmd[5] = SECTOR_SIZE_CODE;
 | |
| 	cmd[6] = f_sectors;
 | |
| 	cmd[7] = f_dp->gap;	/* sector gap */
 | |
| 	cmd[8] = DTL;		/* data length */
 | |
| 	if (fdc_command(cmd, 9) != OK) return(ERR_TRANSFER);
 | |
|   }
 | |
| 
 | |
|   /* Block, waiting for disk interrupt. */
 | |
|   if (f_intr_wait() != OK) {
 | |
| 	printf("fd%u: disk interrupt timed out.\n", f_drive);
 | |
|   	return(ERR_TIMEOUT);
 | |
|   }
 | |
| 
 | |
|   /* Get controller status and check for errors. */
 | |
|   r = fdc_results();
 | |
|   if (r != OK) return(r);
 | |
| 
 | |
|   if (f_results[ST1] & WRITE_PROTECT) {
 | |
| 	printf("fd%u: diskette is write protected.\n", f_drive);
 | |
| 	return(ERR_WR_PROTECT);
 | |
|   }
 | |
| 
 | |
|   if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_TRANSFER);
 | |
|   if (f_results[ST1] | f_results[ST2]) return(ERR_TRANSFER);
 | |
| 
 | |
|   if (f_device & FORMAT_DEV_BIT) return(OK);
 | |
| 
 | |
|   /* Compare actual numbers of sectors transferred with expected number. */
 | |
|   s =  (f_results[ST_CYL] - fp->fl_cylinder) * NR_HEADS * f_sectors;
 | |
|   s += (f_results[ST_HEAD] - fp->fl_head) * f_sectors;
 | |
|   s += (f_results[ST_SEC] - BASE_SECTOR - fp->fl_sector);
 | |
|   if (s != 1) return(ERR_TRANSFER);
 | |
| 
 | |
|   /* This sector is next for I/O: */
 | |
|   fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR;
 | |
| #if 0
 | |
|   if (processor < 386) fp->fl_sector++;		/* Old CPU can't keep up. */
 | |
| #endif
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				fdc_results				     *
 | |
|  *===========================================================================*/
 | |
| static int fdc_results(void)
 | |
| {
 | |
| /* Extract results from the controller after an operation, then allow floppy
 | |
|  * interrupts again.
 | |
|  */
 | |
| 
 | |
|   int s, result_nr;
 | |
|   u32_t status;
 | |
|   spin_t spin;
 | |
| 
 | |
|   /* Extract bytes from FDC until it says it has no more.  The loop is
 | |
|    * really an outer loop on result_nr and an inner loop on status. 
 | |
|    * A timeout flag alarm is set.
 | |
|    */
 | |
|   result_nr = 0;
 | |
|   SPIN_FOR(&spin, TIMEOUT_MICROS) {
 | |
| 	/* Reading one byte is almost a mirror of fdc_out() - the DIRECTION
 | |
| 	 * bit must be set instead of clear, but the CTL_BUSY bit destroys
 | |
| 	 * the perfection of the mirror.
 | |
| 	 */
 | |
| 	if ((s=sys_inb(FDC_STATUS, &status)) != OK)
 | |
| 		panic("Sys_inb in fdc_results() failed: %d", s);
 | |
| 	status &= (MASTER | DIRECTION | CTL_BUSY);
 | |
| 	if (status == (MASTER | DIRECTION | CTL_BUSY)) {
 | |
| 		u32_t tmp_r;
 | |
| 		if (result_nr >= MAX_RESULTS) break;	/* too many results */
 | |
| 		if ((s=sys_inb(FDC_DATA, &tmp_r)) != OK)
 | |
| 		   panic("Sys_inb in fdc_results() failed: %d", s);
 | |
| 		f_results[result_nr] = tmp_r;
 | |
| 		result_nr ++;
 | |
| 		continue;
 | |
| 	}
 | |
| 	if (status == MASTER) {			/* all read */
 | |
| 		if ((s=sys_irqenable(&irq_hook_id)) != OK)
 | |
| 			panic("Couldn't enable IRQs: %d", s);
 | |
| 
 | |
| 		return(OK);			/* only good exit */
 | |
| 	}
 | |
|   }
 | |
|   need_reset = TRUE;		/* controller chip must be reset */
 | |
| 
 | |
|   if ((s=sys_irqenable(&irq_hook_id)) != OK)
 | |
| 	panic("Couldn't enable IRQs: %d", s);
 | |
|   return(ERR_STATUS);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				fdc_command				     *
 | |
|  *===========================================================================*/
 | |
| static int fdc_command(
 | |
|   const u8_t *cmd,	/* command bytes */
 | |
|   int len		/* command length */
 | |
| )
 | |
| {
 | |
| /* Output a command to the controller. */
 | |
| 
 | |
|   /* Set a synchronous alarm to force a timeout if the hardware does
 | |
|    * not interrupt.
 | |
|    * Note that the actual check is done by the code that issued the
 | |
|    * fdc_command() call.
 | |
|    */ 
 | |
|   set_timer(&f_tmr_timeout, WAKEUP, f_timeout, 0);
 | |
| 
 | |
|   f_busy = BSY_IO;
 | |
|   while (len > 0) {
 | |
| 	fdc_out(*cmd++);
 | |
| 	len--;
 | |
|   }
 | |
|   return(need_reset ? ERR_DRIVE : OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				fdc_out					     *
 | |
|  *===========================================================================*/
 | |
| static void fdc_out(
 | |
|   int val		/* write this byte to floppy disk controller */
 | |
| )
 | |
| {
 | |
| /* Output a byte to the controller.  This is not entirely trivial, since you
 | |
|  * can only write to it when it is listening, and it decides when to listen.
 | |
|  * If the controller refuses to listen, the FDC chip is given a hard reset.
 | |
|  */
 | |
|   spin_t spin;
 | |
|   int s;
 | |
|   u32_t status;
 | |
| 
 | |
|   if (need_reset) return;	/* if controller is not listening, return */
 | |
| 
 | |
|   /* It may take several tries to get the FDC to accept a command.  */
 | |
|   SPIN_FOR(&spin, TIMEOUT_MICROS) {
 | |
|   	if ((s=sys_inb(FDC_STATUS, &status)) != OK)
 | |
|   		panic("Sys_inb in fdc_out() failed: %d", s);
 | |
| 
 | |
|   	if ((status & (MASTER | DIRECTION)) == (MASTER | 0)) {
 | |
| 		if ((s=sys_outb(FDC_DATA, val)) != OK)
 | |
| 			panic("Sys_outb in fdc_out() failed: %d", s);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
|   }
 | |
| 
 | |
|   need_reset = TRUE;	/* hit it over the head */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				recalibrate				     *
 | |
|  *===========================================================================*/
 | |
| static int recalibrate(void)
 | |
| {
 | |
| /* The floppy disk controller has no way of determining its absolute arm
 | |
|  * position (cylinder).  Instead, it steps the arm a cylinder at a time and
 | |
|  * keeps track of where it thinks it is (in software).  However, after a
 | |
|  * SEEK, the hardware reads information from the diskette telling where the
 | |
|  * arm actually is.  If the arm is in the wrong place, a recalibration is done,
 | |
|  * which forces the arm to cylinder 0.  This way the controller can get back
 | |
|  * into sync with reality.
 | |
|  */
 | |
| 
 | |
|   struct floppy *fp = f_fp;
 | |
|   int r;
 | |
|   u8_t cmd[2];
 | |
| 
 | |
|   /* Issue the RECALIBRATE command and wait for the interrupt. */
 | |
|   cmd[0] = FDC_RECALIBRATE;	/* tell drive to recalibrate itself */
 | |
|   cmd[1] = f_drive;		/* specify drive */
 | |
|   if (fdc_command(cmd, 2) != OK) return(ERR_SEEK);
 | |
|   if (f_intr_wait() != OK) return(ERR_TIMEOUT);
 | |
| 
 | |
|   /* Determine if the recalibration succeeded. */
 | |
|   fdc_out(FDC_SENSE);		/* issue SENSE command to request results */
 | |
|   r = fdc_results();		/* get results of the FDC_RECALIBRATE command*/
 | |
|   fp->fl_curcyl = NO_CYL;	/* force a SEEK next time */
 | |
|   fp->fl_sector = NO_SECTOR;
 | |
|   if (r != OK ||		/* controller would not respond */
 | |
|      (f_results[ST0] & ST0_BITS_SEEK) != SEEK_ST0 || f_results[ST_PCN] != 0) {
 | |
| 	/* Recalibration failed.  FDC must be reset. */
 | |
| 	need_reset = TRUE;
 | |
| 	return(ERR_RECALIBRATE);
 | |
|   } else {
 | |
| 	/* Recalibration succeeded. */
 | |
| 	fp->fl_calibration = CALIBRATED;
 | |
| 	fp->fl_curcyl = f_results[ST_PCN];
 | |
| 	return(OK);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_reset					     *
 | |
|  *===========================================================================*/
 | |
| static void f_reset(void)
 | |
| {
 | |
| /* Issue a reset to the controller.  This is done after any catastrophe,
 | |
|  * like the controller refusing to respond.
 | |
|  */
 | |
|   pvb_pair_t byte_out[2];
 | |
|   int s,i;
 | |
|   message mess;
 | |
|   int ipc_status;
 | |
| 
 | |
|   /* Disable interrupts and strobe reset bit low. */
 | |
|   need_reset = FALSE;
 | |
| 
 | |
|   /* It is not clear why the next lock is needed.  Writing 0 to DOR causes
 | |
|    * interrupt, while the PC documentation says turning bit 8 off disables
 | |
|    * interrupts.  Without the lock:
 | |
|    *   1) the interrupt handler sets the floppy mask bit in the 8259.
 | |
|    *   2) writing ENABLE_INT to DOR causes the FDC to assert the interrupt
 | |
|    *      line again, but the mask stops the cpu being interrupted.
 | |
|    *   3) the sense interrupt clears the interrupt (not clear which one).
 | |
|    * and for some reason the reset does not work.
 | |
|    */
 | |
|   (void) fdc_command((u8_t *) 0, 0);   /* need only the timer */
 | |
|   motor_status = 0;
 | |
|   pv_set(byte_out[0], DOR, 0);			/* strobe reset bit low */
 | |
|   pv_set(byte_out[1], DOR, ENABLE_INT);		/* strobe it high again */
 | |
|   if ((s=sys_voutb(byte_out, 2)) != OK)
 | |
|   	panic("Sys_voutb in f_reset() failed: %d", s); 
 | |
| 
 | |
|   /* A synchronous alarm timer was set in fdc_command. Expect an interrupt,
 | |
|    * but be prepared to handle a timeout.
 | |
|    */
 | |
|   do {
 | |
| 	if ((s = driver_receive(ANY, &mess, &ipc_status)) != OK)
 | |
| 		panic("Couldn't receive message: %d", s);
 | |
| 	if (is_ipc_notify(ipc_status)) {
 | |
| 		switch (_ENDPOINT_P(mess.m_source)) {
 | |
| 			case CLOCK:
 | |
| 				f_expire_tmrs(mess.m_notify.timestamp);
 | |
| 				break;
 | |
| 			default :
 | |
| 				f_busy = BSY_IDLE;
 | |
| 				break;
 | |
| 		}
 | |
|   	} else {			/* expect hw interrupt */
 | |
|   		f_busy = BSY_IDLE;
 | |
|   	}
 | |
|   } while (f_busy == BSY_IO);
 | |
| 
 | |
|   /* The controller supports 4 drives and returns a result for each of them.
 | |
|    * Collect all the results now.  The old version only collected the first
 | |
|    * result.  This happens to work for 2 drives, but it doesn't work for 3
 | |
|    * or more drives, at least with only drives 0 and 2 actually connected
 | |
|    * (the controller generates an extra interrupt for the middle drive when
 | |
|    * drive 2 is accessed and the driver panics).
 | |
|    *
 | |
|    * It would be better to keep collecting results until there are no more.
 | |
|    * For this, fdc_results needs to return the number of results (instead
 | |
|    * of OK) when it succeeds.
 | |
|    */
 | |
|   for (i = 0; i < 4; i++) {
 | |
| 	fdc_out(FDC_SENSE);	/* probe FDC to make it return status */
 | |
| 	(void) fdc_results();	/* flush controller */
 | |
|   }
 | |
|   for (i = 0; i < NR_DRIVES; i++)	/* clear each drive */
 | |
| 	floppy[i].fl_calibration = UNCALIBRATED;
 | |
| 
 | |
|   /* The current timing parameters must be specified again. */
 | |
|   prev_dp = NULL;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_intr_wait				     *
 | |
|  *===========================================================================*/
 | |
| static int f_intr_wait(void)
 | |
| {
 | |
| /* Wait for an interrupt, but not forever.  The FDC may have all the time of
 | |
|  * the world, but we humans do not.
 | |
|  */
 | |
|   message mess;
 | |
|   int r, ipc_status;
 | |
| 
 | |
|   /* We expect an interrupt, but if a timeout, occurs, report an error. */
 | |
|   do {
 | |
| 	if ((r = driver_receive(ANY, &mess, &ipc_status)) != OK)
 | |
| 		panic("Couldn't receive message: %d", r);
 | |
| 	if (is_ipc_notify(ipc_status)) {
 | |
| 		switch (_ENDPOINT_P(mess.m_source)) {
 | |
| 			case CLOCK:
 | |
| 				f_expire_tmrs(mess.m_notify.timestamp);
 | |
| 				break;
 | |
| 			default :
 | |
| 				f_busy = BSY_IDLE;
 | |
| 				break;
 | |
| 		}
 | |
|   	} else { 
 | |
|   		f_busy = BSY_IDLE;
 | |
|   	}
 | |
|   } while (f_busy == BSY_IO);
 | |
| 
 | |
|   if (f_busy == BSY_WAKEN) {
 | |
| 
 | |
| 	/* No interrupt from the FDC, this means that there is probably no
 | |
| 	 * floppy in the drive.  Get the FDC down to earth and return error.
 | |
| 	 */
 | |
| 	need_reset = TRUE;
 | |
| 	return(ERR_TIMEOUT);
 | |
|   }
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_timeout				     *
 | |
|  *===========================================================================*/
 | |
| static void f_timeout(minix_timer_t *UNUSED(tp))
 | |
| {
 | |
| /* This routine is called when a timer expires.  Usually to tell that a
 | |
|  * motor has spun up, but also to forge an interrupt when it takes too long
 | |
|  * for the FDC to interrupt (no floppy in the drive).  It sets a flag to tell
 | |
|  * what has happened.
 | |
|  */
 | |
|   if (f_busy == BSY_IO) {
 | |
| 	f_busy = BSY_WAKEN;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				read_id					     *
 | |
|  *===========================================================================*/
 | |
| static int read_id(void)
 | |
| {
 | |
| /* Determine current cylinder and sector. */
 | |
| 
 | |
|   struct floppy *fp = f_fp;
 | |
|   int result;
 | |
|   u8_t cmd[2];
 | |
| 
 | |
|   /* Never attempt a read id if the drive is uncalibrated or motor is off. */
 | |
|   if (fp->fl_calibration == UNCALIBRATED) return(ERR_READ_ID);
 | |
|   if ((motor_status & (1 << f_drive)) == 0) return(ERR_READ_ID);
 | |
| 
 | |
|   /* The command is issued by outputting 2 bytes to the controller chip. */
 | |
|   cmd[0] = FDC_READ_ID;		/* issue the read id command */
 | |
|   cmd[1] = (fp->fl_head << 2) | f_drive;
 | |
|   if (fdc_command(cmd, 2) != OK) return(ERR_READ_ID);
 | |
|   if (f_intr_wait() != OK) return(ERR_TIMEOUT);
 | |
| 
 | |
|   /* Get controller status and check for errors. */
 | |
|   result = fdc_results();
 | |
|   if (result != OK) return(result);
 | |
| 
 | |
|   if ((f_results[ST0] & ST0_BITS_TRANS) != TRANS_ST0) return(ERR_READ_ID);
 | |
|   if (f_results[ST1] | f_results[ST2]) return(ERR_READ_ID);
 | |
| 
 | |
|   /* The next sector is next for I/O: */
 | |
|   fp->fl_sector = f_results[ST_SEC] - BASE_SECTOR + 1;
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_do_open				     *
 | |
|  *===========================================================================*/
 | |
| static int f_do_open(devminor_t minor, int UNUSED(access))
 | |
| {
 | |
| /* Handle an open on a floppy.  Determine diskette type if need be. */
 | |
| 
 | |
|   int dtype;
 | |
|   struct test_order *top;
 | |
| 
 | |
|   /* Decode the message parameters. */
 | |
|   if (f_prepare(minor) == NULL) return(ENXIO);
 | |
| 
 | |
|   dtype = f_device & DEV_TYPE_BITS;	/* get density from minor dev */
 | |
|   if (dtype >= MINOR_fd0p0) dtype = 0;
 | |
| 
 | |
|   if (dtype != 0) {
 | |
| 	/* All types except 0 indicate a specific drive/medium combination.*/
 | |
| 	dtype = (dtype >> DEV_TYPE_SHIFT) - 1;
 | |
| 	if (dtype >= NT) return(ENXIO);
 | |
| 	f_fp->fl_density = dtype;
 | |
| 	(void) f_prepare(f_device);	/* Recompute parameters. */
 | |
| 	return(OK);
 | |
|   }
 | |
|   if (f_device & FORMAT_DEV_BIT) return(EIO);	/* Can't format /dev/fdN */
 | |
| 
 | |
|   /* The device opened is /dev/fdN.  Experimentally determine drive/medium.
 | |
|    * First check fl_density.  If it is not NO_DENS, the drive has been used
 | |
|    * before and the value of fl_density tells what was found last time. Try
 | |
|    * that first.  If the motor is still running then assume nothing changed.
 | |
|    */
 | |
|   if (f_fp->fl_density != NO_DENS) {
 | |
| 	if (motor_status & (1 << f_drive)) return(OK);
 | |
| 	if (test_read(f_fp->fl_density) == OK) return(OK);
 | |
|   }
 | |
| 
 | |
|   /* Either drive type is unknown or a different diskette is now present.
 | |
|    * Use test_order to try them one by one.
 | |
|    */
 | |
|   for (top = &test_order[0]; top < &test_order[NT-1]; top++) {
 | |
| 	dtype = top->t_density;
 | |
| 
 | |
| 	/* Skip densities that have been proven to be impossible */
 | |
| 	if (!(f_fp->fl_class & (1 << dtype))) continue;
 | |
| 
 | |
| 	if (test_read(dtype) == OK) {
 | |
| 		/* The test succeeded, use this knowledge to limit the
 | |
| 		 * drive class to match the density just read.
 | |
| 		 */
 | |
| 		f_fp->fl_class &= top->t_class;
 | |
| 		return(OK);
 | |
| 	}
 | |
| 	/* Test failed, wrong density or did it time out? */
 | |
| 	if (f_busy == BSY_WAKEN) break;
 | |
|   }
 | |
|   f_fp->fl_density = NO_DENS;
 | |
|   return(EIO);			/* nothing worked */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_do_close				     *
 | |
|  *===========================================================================*/
 | |
| static int f_do_close(devminor_t UNUSED(minor))
 | |
| {
 | |
| /* Handle a close on a floppy.  Nothing to do here. */
 | |
| 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				test_read				     *
 | |
|  *===========================================================================*/
 | |
| static int test_read(int density)
 | |
| {
 | |
| /* Try to read the highest numbered sector on cylinder 2.  Not all floppy
 | |
|  * types have as many sectors per track, and trying cylinder 2 finds the
 | |
|  * ones that need double stepping.
 | |
|  */
 | |
|   int device;
 | |
|   off_t position;
 | |
|   iovec_t iovec1;
 | |
|   ssize_t result;
 | |
| 
 | |
|   f_fp->fl_density = density;
 | |
|   device = ((density + 1) << DEV_TYPE_SHIFT) + f_drive;
 | |
| 
 | |
|   (void) f_prepare(device);
 | |
|   position = (off_t) f_dp->test << SECTOR_SHIFT;
 | |
|   iovec1.iov_addr = (vir_bytes) floppy_buf;
 | |
|   iovec1.iov_size = SECTOR_SIZE;
 | |
|   result = f_transfer(device, FALSE /*do_write*/, position, SELF,
 | |
| 	&iovec1, 1, BDEV_NOFLAGS);
 | |
| 
 | |
|   if (result != SECTOR_SIZE) return(EIO);
 | |
| 
 | |
|   partition(&f_dtab, f_drive, P_FLOPPY, 0);
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				f_geometry				     *
 | |
|  *===========================================================================*/
 | |
| static void f_geometry(devminor_t minor, struct part_geom *entry)
 | |
| {
 | |
|   if (f_prepare(minor) == NULL) return;
 | |
| 
 | |
|   entry->cylinders = f_dp->cyls;
 | |
|   entry->heads = NR_HEADS;
 | |
|   entry->sectors = f_sectors;
 | |
| }
 |