
Now that clock_t is an unsigned value, we can also allow the system uptime to wrap. Essentially, instead of using (a <= b) to see if time a occurs no later than time b, we use (b - a <= CLOCK_MAX / 2). The latter value does not exist, so instead we add TMRDIFF_MAX for that purpose. We must therefore also avoid using values like 0 and LONG_MAX as special values for absolute times. This patch extends the libtimers interface so that it no longer uses 0 to indicate "no timeout". Similarly, TMR_NEVER is now used as special value only when otherwise a relative time difference would be used. A minix_timer structure is now considered in use when it has a watchdog function set, rather than when the absolute expiry time is not TMR_NEVER. A few new macros in <minix/timers.h> help with timer comparison and obtaining properties from a minix_timer structure. This patch also eliminates the union of timer arguments, instead using the only union element that is only used (the integer). This prevents potential problems with e.g. live update. The watchdog function prototype is changed to pass in the argument value rather than a pointer to the timer structure, since obtaining the argument value was the only current use of the timer structure anyway. The result is a somewhat friendlier timers API. The VFS select code required a few more invasive changes to restrict the timer value to the new maximum, effectively matching the timer code in PM. As a side effect, select(2) has been changed to reject invalid timeout values. That required a change to the test set, which relied on the previous, erroneous behavior. Finally, while we're rewriting significant chunks of the timer code anyway, also covert it to KNF and add a few more explanatory comments. Change-Id: Id43165c3fbb140b32b90be2cca7f68dd646ea72e
427 lines
13 KiB
C
427 lines
13 KiB
C
#define UNPAGED 1 /* for proper kmain() prototype */
|
|
|
|
#include "kernel/kernel.h"
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <minix/minlib.h>
|
|
#include <minix/const.h>
|
|
#include <minix/type.h>
|
|
#include <minix/board.h>
|
|
#include <minix/com.h>
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/reboot.h>
|
|
#include "string.h"
|
|
#include "arch_proto.h"
|
|
#include "direct_utils.h"
|
|
#include "bsp_serial.h"
|
|
#include "glo.h"
|
|
#include <machine/multiboot.h>
|
|
|
|
#if USE_SYSDEBUG
|
|
#define MULTIBOOT_VERBOSE 1
|
|
#endif
|
|
|
|
/* to-be-built kinfo struct, diagnostics buffer */
|
|
kinfo_t kinfo;
|
|
struct kmessages kmessages;
|
|
|
|
/* pg_utils.c uses this; in this phase, there is a 1:1 mapping. */
|
|
phys_bytes vir2phys(void *addr) { return (phys_bytes) addr; }
|
|
|
|
static void setup_mbi(multiboot_info_t *mbi, char *bootargs);
|
|
|
|
/* String length used for mb_itoa */
|
|
#define ITOA_BUFFER_SIZE 20
|
|
|
|
/* Kernel may use memory */
|
|
int kernel_may_alloc = 1;
|
|
|
|
/* kernel bss */
|
|
extern u32_t _edata;
|
|
extern u32_t _end;
|
|
|
|
/* kernel unpaged bss */
|
|
extern char _kern_unpaged_edata;
|
|
extern char _kern_unpaged_end;
|
|
|
|
/**
|
|
*
|
|
* The following function combines a few things together
|
|
* that can well be done using standard libc like strlen/strstr
|
|
* and such but these are not available in pre_init stage.
|
|
*
|
|
* The function expects content to be in the form of space separated
|
|
* key value pairs.
|
|
* param content the contents to search in
|
|
* param key the key to find (this *should* include the key/value delimiter)
|
|
* param value a pointer to an initialized char * of at least value_max_len length
|
|
* param value_max_len the maximum length of the value to store in value including
|
|
* the end char
|
|
*
|
|
**/
|
|
int find_value(char * content,char * key,char *value,int value_max_len){
|
|
|
|
char *iter,*keyp;
|
|
int key_len,content_len,match_len,value_len;
|
|
|
|
/* return if the input is invalid */
|
|
if (key == NULL || content == NULL || value == NULL) {
|
|
return 1;
|
|
}
|
|
|
|
/* find the key and content length */
|
|
key_len = content_len =0;
|
|
for(iter = key ; *iter != '\0'; iter++, key_len++);
|
|
for(iter = content ; *iter != '\0'; iter++, content_len++);
|
|
|
|
/* return if key or content length invalid */
|
|
if (key_len == 0 || content_len == 0) {
|
|
return 1;
|
|
}
|
|
|
|
/* now find the key in the contents */
|
|
match_len =0;
|
|
for (iter = content ,keyp=key; match_len < key_len && *iter != '\0' ; iter++) {
|
|
if (*iter == *keyp) {
|
|
match_len++;
|
|
keyp++;
|
|
continue;
|
|
}
|
|
/* The current key does not match the value , reset */
|
|
match_len =0;
|
|
keyp=key;
|
|
}
|
|
|
|
if (match_len == key_len) {
|
|
printf("key found at %d %s\n", match_len, &content[match_len]);
|
|
value_len = 0;
|
|
/* copy the content to the value char iter already points to the first
|
|
char value */
|
|
while(*iter != '\0' && *iter != ' ' && value_len + 1< value_max_len) {
|
|
*value++ = *iter++;
|
|
value_len++;
|
|
}
|
|
*value='\0';
|
|
return 0;
|
|
}
|
|
return 1; /* not found */
|
|
}
|
|
|
|
static int mb_set_param(char *bigbuf,char *name,char *value, kinfo_t *cbi)
|
|
{
|
|
/* bigbuf contains a list of key=value pairs separated by \0 char.
|
|
* The list itself is ended by a second \0 terminator*/
|
|
char *p = bigbuf;
|
|
char *bufend = bigbuf + MULTIBOOT_PARAM_BUF_SIZE;
|
|
char *q;
|
|
int namelen = strlen(name);
|
|
int valuelen = strlen(value);
|
|
|
|
/* Some variables we recognize */
|
|
if(!strcmp(name, SERVARNAME)) { cbi->do_serial_debug = 1; }
|
|
if(!strcmp(name, SERBAUDVARNAME)) { cbi->serial_debug_baud = atoi(value); }
|
|
|
|
/* Delete the item if already exists */
|
|
while (*p) {
|
|
if (strncmp(p, name, namelen) == 0 && p[namelen] == '=') {
|
|
q = p;
|
|
/* let q point to the end of the entry */
|
|
while (*q) q++;
|
|
/* now copy the remained of the buffer */
|
|
for (q++; q < bufend; q++, p++)
|
|
*p = *q;
|
|
break;
|
|
}
|
|
|
|
/* find the end of the buffer */
|
|
while (*p++);
|
|
p++;
|
|
}
|
|
|
|
|
|
/* find the first empty spot */
|
|
for (p = bigbuf; p < bufend && (*p || *(p + 1)); p++);
|
|
|
|
/* unless we are the first entry step over the delimiter */
|
|
if (p > bigbuf) p++;
|
|
|
|
/* Make sure there's enough space for the new parameter */
|
|
if (p + namelen + valuelen + 3 > bufend) {
|
|
return -1;
|
|
}
|
|
|
|
strcpy(p, name);
|
|
p[namelen] = '=';
|
|
strcpy(p + namelen + 1, value);
|
|
p[namelen + valuelen + 1] = 0;
|
|
p[namelen + valuelen + 2] = 0; /* end with a second delimiter */
|
|
return 0;
|
|
}
|
|
|
|
int overlaps(multiboot_module_t *mod, int n, int cmp_mod)
|
|
{
|
|
multiboot_module_t *cmp = &mod[cmp_mod];
|
|
int m;
|
|
|
|
#define INRANGE(mod, v) ((v) >= mod->mod_start && (v) <= thismod->mod_end)
|
|
#define OVERLAP(mod1, mod2) (INRANGE(mod1, mod2->mod_start) || \
|
|
INRANGE(mod1, mod2->mod_end))
|
|
for(m = 0; m < n; m++) {
|
|
multiboot_module_t *thismod = &mod[m];
|
|
if(m == cmp_mod) continue;
|
|
if(OVERLAP(thismod, cmp)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* XXX: hard-coded stuff for modules */
|
|
#define MB_MODS_NR NR_BOOT_MODULES
|
|
#define MB_MODS_BASE 0x82000000
|
|
#define MB_MODS_ALIGN 0x00800000 /* 8 MB */
|
|
#define MB_MMAP_START 0x80000000
|
|
#define MB_MMAP_SIZE 0x10000000 /* 256 MB */
|
|
|
|
multiboot_module_t mb_modlist[MB_MODS_NR];
|
|
multiboot_memory_map_t mb_memmap;
|
|
|
|
void setup_mbi(multiboot_info_t *mbi, char *bootargs)
|
|
{
|
|
memset(mbi, 0, sizeof(*mbi));
|
|
mbi->flags = MULTIBOOT_INFO_MODS | MULTIBOOT_INFO_MEM_MAP |
|
|
MULTIBOOT_INFO_CMDLINE;
|
|
mbi->mi_mods_count = MB_MODS_NR;
|
|
mbi->mods_addr = (u32_t)&mb_modlist;
|
|
|
|
int i;
|
|
for (i = 0; i < MB_MODS_NR; ++i) {
|
|
mb_modlist[i].mod_start = MB_MODS_BASE + i * MB_MODS_ALIGN;
|
|
mb_modlist[i].mod_end = mb_modlist[i].mod_start + MB_MODS_ALIGN
|
|
- ARM_PAGE_SIZE;
|
|
mb_modlist[i].cmdline = 0;
|
|
}
|
|
|
|
/* morph the bootargs into multiboot */
|
|
mbi->cmdline = (u32_t) bootargs;
|
|
|
|
mbi->mmap_addr =(u32_t)&mb_memmap;
|
|
mbi->mmap_length = sizeof(mb_memmap);
|
|
|
|
mb_memmap.size = sizeof(multiboot_memory_map_t);
|
|
mb_memmap.mm_base_addr = MB_MMAP_START;
|
|
mb_memmap.mm_length = MB_MMAP_SIZE;
|
|
mb_memmap.type = MULTIBOOT_MEMORY_AVAILABLE;
|
|
}
|
|
|
|
void get_parameters(kinfo_t *cbi, char *bootargs)
|
|
{
|
|
multiboot_memory_map_t *mmap;
|
|
multiboot_info_t *mbi = &cbi->mbi;
|
|
int var_i,value_i, m, k;
|
|
char *p;
|
|
extern char _kern_phys_base, _kern_vir_base, _kern_size,
|
|
_kern_unpaged_start, _kern_unpaged_end;
|
|
phys_bytes kernbase = (phys_bytes) &_kern_phys_base,
|
|
kernsize = (phys_bytes) &_kern_size;
|
|
#define BUF 1024
|
|
static char cmdline[BUF];
|
|
|
|
/* get our own copy of the multiboot info struct and module list */
|
|
setup_mbi(mbi, bootargs);
|
|
|
|
/* Set various bits of info for the higher-level kernel. */
|
|
cbi->mem_high_phys = 0;
|
|
cbi->user_sp = (vir_bytes) &_kern_vir_base;
|
|
cbi->vir_kern_start = (vir_bytes) &_kern_vir_base;
|
|
cbi->bootstrap_start = (vir_bytes) &_kern_unpaged_start;
|
|
cbi->bootstrap_len = (vir_bytes) &_kern_unpaged_end -
|
|
cbi->bootstrap_start;
|
|
cbi->kmess = &kmess;
|
|
|
|
/* set some configurable defaults */
|
|
cbi->do_serial_debug = 1;
|
|
cbi->serial_debug_baud = 115200;
|
|
|
|
/* parse boot command line */
|
|
if (mbi->flags&MULTIBOOT_INFO_CMDLINE) {
|
|
static char var[BUF];
|
|
static char value[BUF];
|
|
|
|
/* Override values with cmdline argument */
|
|
memcpy(cmdline, (void *) mbi->cmdline, BUF);
|
|
p = cmdline;
|
|
while (*p) {
|
|
var_i = 0;
|
|
value_i = 0;
|
|
while (*p == ' ') p++; /* skip spaces */
|
|
if (!*p) break; /* is this the end? */
|
|
while (*p && *p != '=' && *p != ' ' && var_i < BUF - 1)
|
|
var[var_i++] = *p++ ;
|
|
var[var_i] = 0;
|
|
if (*p++ != '=') continue; /* skip if not name=value */
|
|
while (*p && *p != ' ' && value_i < BUF - 1) {
|
|
value[value_i++] = *p++ ;
|
|
}
|
|
value[value_i] = 0;
|
|
|
|
mb_set_param(cbi->param_buf, var, value, cbi);
|
|
}
|
|
}
|
|
|
|
/* let higher levels know what we are booting on */
|
|
mb_set_param(cbi->param_buf, ARCHVARNAME, (char *)get_board_arch_name(machine.board_id), cbi);
|
|
mb_set_param(cbi->param_buf, BOARDVARNAME,(char *)get_board_name(machine.board_id) , cbi);
|
|
|
|
|
|
/* move user stack/data down to leave a gap to catch kernel
|
|
* stack overflow; and to distinguish kernel and user addresses
|
|
* at a glance (0xf.. vs 0xe..)
|
|
*/
|
|
cbi->user_sp = USR_STACKTOP;
|
|
cbi->user_end = USR_DATATOP;
|
|
|
|
/* kernel bytes without bootstrap code/data that is currently
|
|
* still needed but will be freed after bootstrapping.
|
|
*/
|
|
kinfo.kernel_allocated_bytes = (phys_bytes) &_kern_size;
|
|
kinfo.kernel_allocated_bytes -= cbi->bootstrap_len;
|
|
|
|
assert(!(cbi->bootstrap_start % ARM_PAGE_SIZE));
|
|
cbi->bootstrap_len = rounddown(cbi->bootstrap_len, ARM_PAGE_SIZE);
|
|
assert(mbi->flags & MULTIBOOT_INFO_MODS);
|
|
assert(mbi->mi_mods_count < MULTIBOOT_MAX_MODS);
|
|
assert(mbi->mi_mods_count > 0);
|
|
memcpy(&cbi->module_list, (void *) mbi->mods_addr,
|
|
mbi->mi_mods_count * sizeof(multiboot_module_t));
|
|
|
|
memset(cbi->memmap, 0, sizeof(cbi->memmap));
|
|
/* mem_map has a variable layout */
|
|
if(mbi->flags & MULTIBOOT_INFO_MEM_MAP) {
|
|
cbi->mmap_size = 0;
|
|
for (mmap = (multiboot_memory_map_t *) mbi->mmap_addr;
|
|
(unsigned long) mmap < mbi->mmap_addr + mbi->mmap_length;
|
|
mmap = (multiboot_memory_map_t *)
|
|
((unsigned long) mmap + mmap->size + sizeof(mmap->size))) {
|
|
if(mmap->type != MULTIBOOT_MEMORY_AVAILABLE) continue;
|
|
add_memmap(cbi, mmap->mm_base_addr, mmap->mm_length);
|
|
}
|
|
} else {
|
|
assert(mbi->flags & MULTIBOOT_INFO_MEMORY);
|
|
add_memmap(cbi, 0, mbi->mem_lower_unused*1024);
|
|
add_memmap(cbi, 0x100000, mbi->mem_upper_unused*1024);
|
|
}
|
|
|
|
/* Sanity check: the kernel nor any of the modules may overlap
|
|
* with each other. Pretend the kernel is an extra module for a
|
|
* second.
|
|
*/
|
|
k = mbi->mi_mods_count;
|
|
assert(k < MULTIBOOT_MAX_MODS);
|
|
cbi->module_list[k].mod_start = kernbase;
|
|
cbi->module_list[k].mod_end = kernbase + kernsize;
|
|
cbi->mods_with_kernel = mbi->mi_mods_count+1;
|
|
cbi->kern_mod = k;
|
|
|
|
for(m = 0; m < cbi->mods_with_kernel; m++) {
|
|
#if 0
|
|
printf("checking overlap of module %08lx-%08lx\n",
|
|
cbi->module_list[m].mod_start, cbi->module_list[m].mod_end);
|
|
#endif
|
|
if(overlaps(cbi->module_list, cbi->mods_with_kernel, m))
|
|
panic("overlapping boot modules/kernel");
|
|
/* We cut out the bits of memory that we know are
|
|
* occupied by the kernel and boot modules.
|
|
*/
|
|
cut_memmap(cbi,
|
|
cbi->module_list[m].mod_start,
|
|
cbi->module_list[m].mod_end);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* During low level init many things are not supposed to work
|
|
* serial being one of them. We therefore can't rely on the
|
|
* serial to debug. POORMANS_FAILURE_NOTIFICATION can be used
|
|
* before we setup our own vector table and will result in calling
|
|
* the bootloader's debugging methods that will hopefully show some
|
|
* information like the currnet PC at on the serial.
|
|
*/
|
|
#define POORMANS_FAILURE_NOTIFICATION asm volatile("svc #00\n")
|
|
|
|
/* use the passed cmdline argument to determine the machine id */
|
|
void set_machine_id(char *cmdline)
|
|
{
|
|
|
|
char boardname[20];
|
|
memset(boardname,'\0',20);
|
|
if (find_value(cmdline,"board_name=",boardname,20)){
|
|
/* we expect the bootloader to pass a board_name as argument
|
|
* this however did not happen and given we still are in early
|
|
* boot we can't use the serial. We therefore generate an interrupt
|
|
* and hope the bootloader will do something nice with it */
|
|
POORMANS_FAILURE_NOTIFICATION;
|
|
}
|
|
machine.board_id = get_board_id_by_short_name(boardname);
|
|
|
|
if (machine.board_id ==0){
|
|
/* same thing as above there is no safe escape */
|
|
POORMANS_FAILURE_NOTIFICATION;
|
|
}
|
|
}
|
|
|
|
kinfo_t *pre_init(int argc, char **argv)
|
|
{
|
|
char *bootargs;
|
|
/* This is the main "c" entry point into the kernel. It gets called
|
|
from head.S */
|
|
|
|
/* Clear BSS */
|
|
memset(&_edata, 0, (u32_t)&_end - (u32_t)&_edata);
|
|
memset(&_kern_unpaged_edata, 0, (u32_t)&_kern_unpaged_end - (u32_t)&_kern_unpaged_edata);
|
|
|
|
/* we get called in a c like fashion where the first arg
|
|
* is the program name (load address) and the rest are
|
|
* arguments. by convention the second argument is the
|
|
* command line */
|
|
if (argc != 2) {
|
|
POORMANS_FAILURE_NOTIFICATION;
|
|
}
|
|
|
|
bootargs = argv[1];
|
|
set_machine_id(bootargs);
|
|
bsp_ser_init();
|
|
/* Get our own copy boot params pointed to by ebx.
|
|
* Here we find out whether we should do serial output.
|
|
*/
|
|
get_parameters(&kinfo, bootargs);
|
|
|
|
/* Make and load a pagetable that will map the kernel
|
|
* to where it should be; but first a 1:1 mapping so
|
|
* this code stays where it should be.
|
|
*/
|
|
dcache_clean(); /* clean the caches */
|
|
pg_clear();
|
|
pg_identity(&kinfo);
|
|
kinfo.freepde_start = pg_mapkernel();
|
|
pg_load();
|
|
vm_enable_paging();
|
|
|
|
/* Done, return boot info so it can be passed to kmain(). */
|
|
return &kinfo;
|
|
}
|
|
|
|
/* pre_init gets executed at the memory location where the kernel was loaded by the boot loader.
|
|
* at that stage we only have a minimum set of functionality present (all symbols gets renamed to
|
|
* ensure this). The following methods are used in that context. Once we jump to kmain they are no
|
|
* longer used and the "real" implementations are visible
|
|
*/
|
|
void send_diag_sig(void) { }
|
|
void minix_shutdown(int how) { arch_shutdown(how); }
|
|
void busy_delay_ms(int x) { }
|
|
int raise(int n) { panic("raise(%d)\n", n); }
|
|
int kern_phys_map_ptr( phys_bytes base_address, vir_bytes io_size, int vm_flags,
|
|
struct kern_phys_map * priv, vir_bytes ptr) { return -1; };
|
|
struct machine machine; /* pre init stage machine */
|