577 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Modula-2
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			577 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Modula-2
		
	
	
		
			Executable File
		
	
	
	
	
(*
 | 
						|
  (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | 
						|
  See the copyright notice in the ACK home directory, in the file "Copyright".
 | 
						|
*)
 | 
						|
 | 
						|
(*$R-*)
 | 
						|
IMPLEMENTATION MODULE Mathlib;
 | 
						|
(*
 | 
						|
  Module:	Mathematical functions
 | 
						|
  Author:	Ceriel J.H. Jacobs
 | 
						|
  Version:	$Header$
 | 
						|
*)
 | 
						|
 | 
						|
  FROM	EM IMPORT	FIF, FEF;
 | 
						|
  FROM	Traps IMPORT	Message;
 | 
						|
 | 
						|
  CONST
 | 
						|
	OneRadianInDegrees	= 57.295779513082320876798155D;
 | 
						|
	OneDegreeInRadians	=  0.017453292519943295769237D;
 | 
						|
	OneOverSqrt2		= 0.70710678118654752440084436210484904D;
 | 
						|
 | 
						|
  (* basic functions *)
 | 
						|
 | 
						|
  PROCEDURE pow(x: REAL; i: INTEGER): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longpow(LONG(x), i));
 | 
						|
  END pow;
 | 
						|
 | 
						|
  PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL;
 | 
						|
    VAR	val: LONGREAL;
 | 
						|
	ri: LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	ri := FLOATD(i);
 | 
						|
	IF x < 0.0D THEN
 | 
						|
		val := longexp(longln(-x) * ri);
 | 
						|
		IF ODD(i) THEN RETURN -val;
 | 
						|
		ELSE RETURN val;
 | 
						|
		END;
 | 
						|
	ELSIF x = 0.0D THEN
 | 
						|
		RETURN 0.0D;
 | 
						|
	ELSE
 | 
						|
		RETURN longexp(longln(x) * ri);
 | 
						|
	END;
 | 
						|
  END longpow;
 | 
						|
 | 
						|
  PROCEDURE sqrt(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longsqrt(LONG(x)));
 | 
						|
  END sqrt;
 | 
						|
 | 
						|
  PROCEDURE longsqrt(x: LONGREAL): LONGREAL;
 | 
						|
    VAR
 | 
						|
	temp: LONGREAL;
 | 
						|
	exp, i: INTEGER;
 | 
						|
  BEGIN
 | 
						|
	IF x <= 0.0D THEN
 | 
						|
		IF x < 0.0D THEN
 | 
						|
			Message("sqrt: negative argument");
 | 
						|
			HALT
 | 
						|
		END;
 | 
						|
		RETURN 0.0D;
 | 
						|
	END;
 | 
						|
	temp := FEF(x,exp);
 | 
						|
	(*
 | 
						|
	 * NOTE
 | 
						|
	 * this wont work on 1's comp
 | 
						|
	 *)
 | 
						|
	IF ODD(exp) THEN
 | 
						|
		temp := 2.0D * temp;
 | 
						|
		DEC(exp);
 | 
						|
	END;
 | 
						|
	temp := 0.5D*(1.0D + temp);
 | 
						|
 | 
						|
	WHILE exp > 28 DO
 | 
						|
		temp := temp * 16384.0D;
 | 
						|
		exp := exp - 28;
 | 
						|
	END;
 | 
						|
	WHILE exp < -28 DO
 | 
						|
		temp := temp / 16384.0D;
 | 
						|
		exp := exp + 28;
 | 
						|
	END;
 | 
						|
	WHILE exp >= 2 DO
 | 
						|
		temp := temp * 2.0D;
 | 
						|
		exp := exp - 2;
 | 
						|
	END;
 | 
						|
	WHILE exp <= -2 DO
 | 
						|
		temp := temp / 2.0D;
 | 
						|
		exp := exp + 2;
 | 
						|
	END;
 | 
						|
	FOR i := 0 TO 5 DO
 | 
						|
		temp := 0.5D*(temp + x/temp);
 | 
						|
	END;
 | 
						|
	RETURN temp;
 | 
						|
  END longsqrt;
 | 
						|
 | 
						|
  PROCEDURE ldexp(x:LONGREAL; n: INTEGER): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	WHILE n >= 16 DO
 | 
						|
		x := x * 65536.0D;
 | 
						|
		n := n - 16;
 | 
						|
	END;
 | 
						|
	WHILE n > 0 DO
 | 
						|
		x := x * 2.0D;
 | 
						|
		DEC(n);
 | 
						|
	END;
 | 
						|
	WHILE n <= -16 DO
 | 
						|
		x := x / 65536.0D;
 | 
						|
		n := n + 16;
 | 
						|
	END;
 | 
						|
	WHILE n < 0 DO
 | 
						|
		x := x / 2.0D;
 | 
						|
		INC(n);
 | 
						|
	END;
 | 
						|
	RETURN x;
 | 
						|
  END ldexp;
 | 
						|
 | 
						|
  PROCEDURE exp(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longexp(LONG(x)));
 | 
						|
  END exp;
 | 
						|
 | 
						|
  PROCEDURE longexp(x: LONGREAL): LONGREAL;
 | 
						|
  (*	Algorithm and coefficients from:
 | 
						|
		"Software manual for the elementary functions"
 | 
						|
		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | 
						|
  *)
 | 
						|
    CONST
 | 
						|
	p0 = 0.25000000000000000000D+00;
 | 
						|
	p1 = 0.75753180159422776666D-02;
 | 
						|
	p2 = 0.31555192765684646356D-04;
 | 
						|
	q0 = 0.50000000000000000000D+00;
 | 
						|
	q1 = 0.56817302698551221787D-01;
 | 
						|
	q2 = 0.63121894374398503557D-03;
 | 
						|
	q3 = 0.75104028399870046114D-06;
 | 
						|
 | 
						|
    VAR
 | 
						|
	neg: BOOLEAN;
 | 
						|
	n: INTEGER;
 | 
						|
	xn, g, x1, x2: LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	neg := x < 0.0D;
 | 
						|
	IF neg THEN
 | 
						|
		x := -x;
 | 
						|
	END;
 | 
						|
	n := TRUNC(x/longln2 + 0.5D);
 | 
						|
	xn := FLOATD(n);
 | 
						|
	x1 := FLOATD(TRUNCD(x));
 | 
						|
	x2 := x - x1;
 | 
						|
	g := ((x1 - xn * 0.693359375D)+x2) - xn * (-2.1219444005469058277D-4);
 | 
						|
	IF neg THEN
 | 
						|
		g := -g;
 | 
						|
		n := -n;
 | 
						|
	END;
 | 
						|
	xn := g*g;
 | 
						|
	x := g*((p2*xn+p1)*xn+p0);
 | 
						|
	INC(n);
 | 
						|
	RETURN ldexp(0.5D + x/((((q3*xn+q2)*xn+q1)*xn+q0) - x), n);
 | 
						|
  END longexp;
 | 
						|
 | 
						|
  PROCEDURE ln(x: REAL): REAL;	(* natural log *)
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longln(LONG(x)));
 | 
						|
  END ln;
 | 
						|
 | 
						|
  PROCEDURE longln(x: LONGREAL): LONGREAL;	(* natural log *)
 | 
						|
  (*	Algorithm and coefficients from:
 | 
						|
		"Software manual for the elementary functions"
 | 
						|
		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | 
						|
   *)
 | 
						|
    CONST
 | 
						|
	p0 = -0.64124943423745581147D+02;
 | 
						|
	p1 =  0.16383943563021534222D+02;
 | 
						|
	p2 = -0.78956112887491257267D+00;
 | 
						|
	q0 = -0.76949932108494879777D+03;
 | 
						|
	q1 =  0.31203222091924532844D+03;
 | 
						|
	q2 = -0.35667977739034646171D+02;
 | 
						|
	q3 =  1.0D;
 | 
						|
    VAR
 | 
						|
	exp: INTEGER;
 | 
						|
	z, znum, zden, w: LONGREAL;
 | 
						|
 | 
						|
  BEGIN
 | 
						|
	IF x <= 0.0D THEN
 | 
						|
		Message("ln: argument <= 0");
 | 
						|
		HALT
 | 
						|
	END;
 | 
						|
	x := FEF(x, exp);
 | 
						|
	IF x > OneOverSqrt2 THEN
 | 
						|
		znum := (x - 0.5D) - 0.5D;
 | 
						|
		zden := x * 0.5D + 0.5D;
 | 
						|
	ELSE
 | 
						|
		znum := x - 0.5D;
 | 
						|
		zden := znum * 0.5D + 0.5D;
 | 
						|
		DEC(exp);
 | 
						|
	END;
 | 
						|
	z := znum / zden;
 | 
						|
	w := z * z;
 | 
						|
	x := z + z * w * (((p2*w+p1)*w+p0)/(((q3*w+q2)*w+q1)*w+q0));
 | 
						|
	z := FLOATD(exp);
 | 
						|
	x := x + z * (-2.121944400546905827679D-4);
 | 
						|
	RETURN x + z * 0.693359375D;
 | 
						|
  END longln;
 | 
						|
 | 
						|
  PROCEDURE log(x: REAL): REAL;	(* log with base 10 *)
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longlog(LONG(x)));
 | 
						|
  END log;
 | 
						|
 | 
						|
  PROCEDURE longlog(x: LONGREAL): LONGREAL;	(* log with base 10 *)
 | 
						|
  BEGIN
 | 
						|
	RETURN longln(x)/longln10;
 | 
						|
  END longlog;
 | 
						|
 | 
						|
  (* trigonometric functions; arguments in radians *)
 | 
						|
 | 
						|
  PROCEDURE sin(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longsin(LONG(x)));
 | 
						|
  END sin;
 | 
						|
 | 
						|
  PROCEDURE sinus(x: LONGREAL; cosflag: BOOLEAN) : LONGREAL;
 | 
						|
  (*	Algorithm and coefficients from:
 | 
						|
		"Software manual for the elementary functions"
 | 
						|
		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | 
						|
  *)
 | 
						|
    CONST
 | 
						|
	r0 = -0.16666666666666665052D+00;
 | 
						|
	r1 =  0.83333333333331650314D-02;
 | 
						|
	r2 = -0.19841269841201840457D-03;
 | 
						|
	r3 =  0.27557319210152756119D-05;
 | 
						|
	r4 = -0.25052106798274584544D-07;
 | 
						|
	r5 =  0.16058936490371589114D-09;
 | 
						|
	r6 = -0.76429178068910467734D-12;
 | 
						|
	r7 =  0.27204790957888846175D-14;
 | 
						|
	A1 =  3.1416015625D;
 | 
						|
	A2 = -8.908910206761537356617D-6;
 | 
						|
    VAR
 | 
						|
	x1, x2, y : LONGREAL;
 | 
						|
	neg : BOOLEAN;
 | 
						|
  BEGIN
 | 
						|
	IF x < 0.0D THEN
 | 
						|
		neg := TRUE;
 | 
						|
		x := -x
 | 
						|
	ELSE	neg := FALSE
 | 
						|
	END;
 | 
						|
	IF cosflag THEN
 | 
						|
		neg := FALSE;
 | 
						|
		y := longhalfpi + x
 | 
						|
	ELSE
 | 
						|
		y := x
 | 
						|
	END;
 | 
						|
	y := y / longpi + 0.5D;
 | 
						|
 | 
						|
	IF FIF(y, 1.0D, y) < 0.0D THEN ; END;
 | 
						|
	IF FIF(y, 0.5D, x1) # 0.0D THEN neg := NOT neg END;
 | 
						|
	IF cosflag THEN y := y - 0.5D END;
 | 
						|
	x2 := FIF(x, 1.0, x1);
 | 
						|
	x := x1 - y * A1;
 | 
						|
	x := x + x2;
 | 
						|
	x := x - y * A2;
 | 
						|
 | 
						|
	IF x < 0.0D THEN
 | 
						|
		neg := NOT neg;
 | 
						|
		x := -x
 | 
						|
	END;
 | 
						|
	y := x * x;
 | 
						|
	x := x + x * y * (((((((r7*y+r6)*y+r5)*y+r4)*y+r3)*y+r2)*y+r1)*y+r0);
 | 
						|
	IF neg THEN RETURN -x END;
 | 
						|
	RETURN x;
 | 
						|
  END sinus;
 | 
						|
 | 
						|
  PROCEDURE longsin(x: LONGREAL): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN sinus(x, FALSE);
 | 
						|
  END longsin;
 | 
						|
 | 
						|
  PROCEDURE cos(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longcos(LONG(x)));
 | 
						|
  END cos;
 | 
						|
 | 
						|
  PROCEDURE longcos(x: LONGREAL): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	IF x < 0.0D THEN x := -x; END;
 | 
						|
	RETURN sinus(x, TRUE);	
 | 
						|
  END longcos;
 | 
						|
 | 
						|
  PROCEDURE tan(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longtan(LONG(x)));
 | 
						|
  END tan;
 | 
						|
 | 
						|
  PROCEDURE longtan(x: LONGREAL): LONGREAL;
 | 
						|
  (*	Algorithm and coefficients from:
 | 
						|
		"Software manual for the elementary functions"
 | 
						|
		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | 
						|
  *)
 | 
						|
 | 
						|
    CONST
 | 
						|
	p1 = -0.13338350006421960681D+00;
 | 
						|
	p2 =  0.34248878235890589960D-02;
 | 
						|
	p3 = -0.17861707342254426711D-04;
 | 
						|
 | 
						|
	q0 =  1.0D;
 | 
						|
	q1 = -0.46671683339755294240D+00;
 | 
						|
	q2 =  0.25663832289440112864D-01;
 | 
						|
	q3 = -0.31181531907010027307D-03;
 | 
						|
	q4 =  0.49819433993786512270D-06;
 | 
						|
 | 
						|
	A1 =  1.57080078125D;
 | 
						|
	A2 = -4.454455103380768678308D-06;
 | 
						|
 | 
						|
    VAR y, x1, x2: LONGREAL;
 | 
						|
	negative: BOOLEAN;
 | 
						|
	invert: BOOLEAN;
 | 
						|
  BEGIN
 | 
						|
	negative := x < 0.0D;
 | 
						|
	y := x / longhalfpi + 0.5D;
 | 
						|
 | 
						|
        (*      Use extended precision to calculate reduced argument.
 | 
						|
                Here we used 12 bits of the mantissa for a1.
 | 
						|
                Also split x in integer part x1 and fraction part x2.
 | 
						|
        *)
 | 
						|
	IF FIF(y, 1.0D, y) < 0.0D THEN ; END;
 | 
						|
	invert := FIF(y, 0.5D, x1) # 0.0D;
 | 
						|
	x2 := FIF(x, 1.0D, x1);
 | 
						|
	x := x1 - y * A1;
 | 
						|
	x := x + x2;
 | 
						|
	x := x - y * A2;
 | 
						|
 | 
						|
	y := x * x;
 | 
						|
	x := x + x * y * ((p3*y+p2)*y+p1);
 | 
						|
	y := (((q4*y+q3)*y+q2)*y+q1)*y+q0;
 | 
						|
	IF negative THEN x := -x END;
 | 
						|
	IF invert THEN RETURN -y/x END;
 | 
						|
	RETURN x/y;
 | 
						|
  END longtan;
 | 
						|
 | 
						|
  PROCEDURE arcsin(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longarcsin(LONG(x)));
 | 
						|
  END arcsin;
 | 
						|
 | 
						|
  PROCEDURE arcsincos(x: LONGREAL; cosfl: BOOLEAN): LONGREAL;
 | 
						|
    CONST
 | 
						|
	p0 = -0.27368494524164255994D+02;
 | 
						|
	p1 =  0.57208227877891731407D+02;
 | 
						|
	p2 = -0.39688862997540877339D+02;
 | 
						|
	p3 =  0.10152522233806463645D+02;
 | 
						|
	p4 = -0.69674573447350646411D+00;
 | 
						|
 | 
						|
	q0 = -0.16421096714498560795D+03;
 | 
						|
	q1 =  0.41714430248260412556D+03;
 | 
						|
	q2 = -0.38186303361750149284D+03;
 | 
						|
	q3 =  0.15095270841030604719D+03;
 | 
						|
	q4 = -0.23823859153670238830D+02;
 | 
						|
	q5 =  1.0D;
 | 
						|
    VAR
 | 
						|
	negative : BOOLEAN;
 | 
						|
	big: BOOLEAN;
 | 
						|
	g: LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	negative := x < 0.0D;
 | 
						|
	IF negative THEN x := -x; END;
 | 
						|
	IF x > 0.5D THEN
 | 
						|
		big := TRUE;
 | 
						|
		IF x > 1.0D THEN
 | 
						|
			Message("arcsin or arccos: argument > 1");
 | 
						|
			HALT
 | 
						|
		END;
 | 
						|
		g := 0.5D - 0.5D * x;
 | 
						|
		x := -longsqrt(g);
 | 
						|
		x := x + x;
 | 
						|
	ELSE
 | 
						|
		big := FALSE;
 | 
						|
		g := x * x;
 | 
						|
	END;
 | 
						|
	x := x + x * g *
 | 
						|
	  ((((p4*g+p3)*g+p2)*g+p1)*g+p0)/(((((q5*g+q4)*g+q3)*g+q2)*g+q1)*g+q0);
 | 
						|
	IF cosfl AND NOT negative THEN x := -x END;
 | 
						|
	IF cosfl = NOT big THEN
 | 
						|
		x := (x + longquartpi) + longquartpi;
 | 
						|
	ELSIF cosfl AND negative AND big THEN
 | 
						|
		x := (x + longhalfpi) + longhalfpi;
 | 
						|
	END;
 | 
						|
	IF negative AND NOT cosfl THEN x := -x END;
 | 
						|
	RETURN x;
 | 
						|
  END arcsincos;	
 | 
						|
 | 
						|
  PROCEDURE longarcsin(x: LONGREAL): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN arcsincos(x, FALSE);
 | 
						|
  END longarcsin;
 | 
						|
 | 
						|
  PROCEDURE arccos(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longarccos(LONG(x)));
 | 
						|
  END arccos;
 | 
						|
 | 
						|
  PROCEDURE longarccos(x: LONGREAL): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN arcsincos(x, TRUE);
 | 
						|
  END longarccos;
 | 
						|
 | 
						|
  PROCEDURE arctan(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longarctan(LONG(x)));
 | 
						|
  END arctan;
 | 
						|
 | 
						|
  VAR A: ARRAY[0..3] OF LONGREAL;
 | 
						|
      arctaninit: BOOLEAN;
 | 
						|
 | 
						|
  PROCEDURE longarctan(x: LONGREAL): LONGREAL;
 | 
						|
  (*	Algorithm and coefficients from:
 | 
						|
		"Software manual for the elementary functions"
 | 
						|
		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | 
						|
  *)
 | 
						|
    CONST
 | 
						|
	p0 = -0.13688768894191926929D+02;
 | 
						|
	p1 = -0.20505855195861651981D+02;
 | 
						|
	p2 = -0.84946240351320683534D+01;
 | 
						|
	p3 = -0.83758299368150059274D+00;
 | 
						|
	q0 =  0.41066306682575781263D+02;
 | 
						|
	q1 =  0.86157349597130242515D+02;
 | 
						|
	q2 =  0.59578436142597344465D+02;
 | 
						|
	q3 =  0.15024001160028576121D+02;
 | 
						|
	q4 =  1.0D;
 | 
						|
    VAR
 | 
						|
	g: LONGREAL;
 | 
						|
	neg: BOOLEAN;
 | 
						|
	n: INTEGER;
 | 
						|
  BEGIN
 | 
						|
	IF NOT arctaninit THEN
 | 
						|
		arctaninit := TRUE;
 | 
						|
		A[0] := 0.0D;
 | 
						|
		A[1] := 0.52359877559829887307710723554658381D;	(* p1/6 *)
 | 
						|
		A[2] := longhalfpi;
 | 
						|
		A[3] := 1.04719755119659774615421446109316763D; (* pi/3 *)
 | 
						|
	END;
 | 
						|
	neg := FALSE;
 | 
						|
	IF x < 0.0D THEN
 | 
						|
		neg := TRUE;
 | 
						|
		x := -x;
 | 
						|
	END;
 | 
						|
	IF x > 1.0D THEN
 | 
						|
		x := 1.0D/x;
 | 
						|
		n := 2
 | 
						|
	ELSE
 | 
						|
		n := 0
 | 
						|
	END;
 | 
						|
	IF x > 0.26794919243112270647D (* 2-sqrt(3) *) THEN
 | 
						|
		INC(n);
 | 
						|
		x := (((0.73205080756887729353D*x-0.5D)-0.5D)+x)/
 | 
						|
			(1.73205080756887729353D + x);
 | 
						|
	END;
 | 
						|
	g := x*x;
 | 
						|
	x := x + x * g * (((p3*g+p2)*g+p1)*g+p0) / ((((q4*g+q3)*g+q2)*g+q1)*g+q0);
 | 
						|
	IF n > 1 THEN x := -x END;
 | 
						|
	x := x + A[n];
 | 
						|
	IF neg THEN RETURN -x; END;
 | 
						|
	RETURN x;
 | 
						|
  END longarctan;
 | 
						|
 | 
						|
  (* hyperbolic functions *)
 | 
						|
  (* The C math library has better implementations for some of these, but
 | 
						|
     they depend on some properties of the floating point implementation,
 | 
						|
     and, for now, we don't want that in the Modula-2 system.
 | 
						|
  *)
 | 
						|
 | 
						|
  PROCEDURE sinh(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longsinh(LONG(x)));
 | 
						|
  END sinh;
 | 
						|
 | 
						|
  PROCEDURE longsinh(x: LONGREAL): LONGREAL;
 | 
						|
    VAR expx: LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	expx := longexp(x);
 | 
						|
	RETURN (expx - 1.0D/expx)/2.0D;
 | 
						|
  END longsinh;
 | 
						|
 | 
						|
  PROCEDURE cosh(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longcosh(LONG(x)));
 | 
						|
  END cosh;
 | 
						|
 | 
						|
  PROCEDURE longcosh(x: LONGREAL): LONGREAL;
 | 
						|
    VAR expx: LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	expx := longexp(x);
 | 
						|
	RETURN (expx + 1.0D/expx)/2.0D;
 | 
						|
  END longcosh;
 | 
						|
 | 
						|
  PROCEDURE tanh(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longtanh(LONG(x)));
 | 
						|
  END tanh;
 | 
						|
 | 
						|
  PROCEDURE longtanh(x: LONGREAL): LONGREAL;
 | 
						|
    VAR expx: LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	expx := longexp(x);
 | 
						|
	RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx);
 | 
						|
  END longtanh;
 | 
						|
 | 
						|
  PROCEDURE arcsinh(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longarcsinh(LONG(x)));
 | 
						|
  END arcsinh;
 | 
						|
 | 
						|
  PROCEDURE longarcsinh(x: LONGREAL): LONGREAL;
 | 
						|
    VAR neg: BOOLEAN;
 | 
						|
  BEGIN
 | 
						|
	neg := FALSE;
 | 
						|
	IF x < 0.0D THEN
 | 
						|
		neg := TRUE;
 | 
						|
		x := -x;
 | 
						|
	END;
 | 
						|
	x := longln(x + longsqrt(x*x+1.0D));
 | 
						|
	IF neg THEN RETURN -x; END;
 | 
						|
	RETURN x;
 | 
						|
  END longarcsinh;
 | 
						|
 | 
						|
  PROCEDURE arccosh(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longarccosh(LONG(x)));
 | 
						|
  END arccosh;
 | 
						|
 | 
						|
  PROCEDURE longarccosh(x: LONGREAL): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	IF x < 1.0D THEN
 | 
						|
		Message("arccosh: argument < 1");
 | 
						|
		HALT
 | 
						|
	END;
 | 
						|
	RETURN longln(x + longsqrt(x*x - 1.0D));
 | 
						|
  END longarccosh;
 | 
						|
 | 
						|
  PROCEDURE arctanh(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longarctanh(LONG(x)));
 | 
						|
  END arctanh;
 | 
						|
 | 
						|
  PROCEDURE longarctanh(x: LONGREAL): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	IF (x <= -1.0D) OR (x >= 1.0D) THEN
 | 
						|
		Message("arctanh: ABS(argument) >= 1");
 | 
						|
		HALT
 | 
						|
	END;
 | 
						|
	RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D;
 | 
						|
  END longarctanh;
 | 
						|
 | 
						|
  (* conversions *)
 | 
						|
 | 
						|
  PROCEDURE RadianToDegree(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longRadianToDegree(LONG(x)));
 | 
						|
  END RadianToDegree;
 | 
						|
 | 
						|
  PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN x * OneRadianInDegrees;
 | 
						|
  END longRadianToDegree;
 | 
						|
 | 
						|
  PROCEDURE DegreeToRadian(x: REAL): REAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN SHORT(longDegreeToRadian(LONG(x)));
 | 
						|
  END DegreeToRadian;
 | 
						|
 | 
						|
  PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL;
 | 
						|
  BEGIN
 | 
						|
	RETURN x * OneDegreeInRadians;
 | 
						|
  END longDegreeToRadian;
 | 
						|
 | 
						|
BEGIN
 | 
						|
	arctaninit := FALSE;
 | 
						|
END Mathlib.
 |