1096 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1096 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* dfa - DFA construction routines */
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c) 1990 The Regents of the University of California.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This code is derived from software contributed to Berkeley by
 | |
|  * Vern Paxson.
 | |
|  * 
 | |
|  * The United States Government has rights in this work pursuant
 | |
|  * to contract no. DE-AC03-76SF00098 between the United States
 | |
|  * Department of Energy and the University of California.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms with or without
 | |
|  * modification are permitted provided that: (1) source distributions retain
 | |
|  * this entire copyright notice and comment, and (2) distributions including
 | |
|  * binaries display the following acknowledgement:  ``This product includes
 | |
|  * software developed by the University of California, Berkeley and its
 | |
|  * contributors'' in the documentation or other materials provided with the
 | |
|  * distribution and in all advertising materials mentioning features or use
 | |
|  * of this software.  Neither the name of the University nor the names of
 | |
|  * its contributors may be used to endorse or promote products derived from
 | |
|  * this software without specific prior written permission.
 | |
|  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 | |
|  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 | |
|  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  */
 | |
| 
 | |
| /* $Header$ */
 | |
| 
 | |
| #include "flexdef.h"
 | |
| 
 | |
| 
 | |
| /* declare functions that have forward references */
 | |
| 
 | |
| void dump_associated_rules PROTO((FILE*, int));
 | |
| void dump_transitions PROTO((FILE*, int[]));
 | |
| void sympartition PROTO((int[], int, int[], int[]));
 | |
| int symfollowset PROTO((int[], int, int, int[]));
 | |
| 
 | |
| 
 | |
| /* check_for_backing_up - check a DFA state for backing up
 | |
|  *
 | |
|  * synopsis
 | |
|  *     void check_for_backing_up( int ds, int state[numecs] );
 | |
|  *
 | |
|  * ds is the number of the state to check and state[] is its out-transitions,
 | |
|  * indexed by equivalence class.
 | |
|  */
 | |
| 
 | |
| void check_for_backing_up( ds, state )
 | |
| int ds;
 | |
| int state[];
 | |
| 	{
 | |
| 	if ( (reject && ! dfaacc[ds].dfaacc_set) ||
 | |
| 	     (! reject && ! dfaacc[ds].dfaacc_state) )
 | |
| 		{ /* state is non-accepting */
 | |
| 		++num_backing_up;
 | |
| 
 | |
| 		if ( backing_up_report )
 | |
| 			{
 | |
| 			fprintf( backing_up_file,
 | |
| 				_( "State #%d is non-accepting -\n" ), ds );
 | |
| 
 | |
| 			/* identify the state */
 | |
| 			dump_associated_rules( backing_up_file, ds );
 | |
| 
 | |
| 			/* Now identify it further using the out- and
 | |
| 			 * jam-transitions.
 | |
| 			 */
 | |
| 			dump_transitions( backing_up_file, state );
 | |
| 
 | |
| 			putc( '\n', backing_up_file );
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* check_trailing_context - check to see if NFA state set constitutes
 | |
|  *                          "dangerous" trailing context
 | |
|  *
 | |
|  * synopsis
 | |
|  *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
 | |
|  *				int accset[nacc+1], int nacc );
 | |
|  *
 | |
|  * NOTES
 | |
|  *  Trailing context is "dangerous" if both the head and the trailing
 | |
|  *  part are of variable size \and/ there's a DFA state which contains
 | |
|  *  both an accepting state for the head part of the rule and NFA states
 | |
|  *  which occur after the beginning of the trailing context.
 | |
|  *
 | |
|  *  When such a rule is matched, it's impossible to tell if having been
 | |
|  *  in the DFA state indicates the beginning of the trailing context or
 | |
|  *  further-along scanning of the pattern.  In these cases, a warning
 | |
|  *  message is issued.
 | |
|  *
 | |
|  *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
 | |
|  *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
 | |
|  */
 | |
| 
 | |
| void check_trailing_context( nfa_states, num_states, accset, nacc )
 | |
| int *nfa_states, num_states;
 | |
| int *accset;
 | |
| int nacc;
 | |
| 	{
 | |
| 	register int i, j;
 | |
| 
 | |
| 	for ( i = 1; i <= num_states; ++i )
 | |
| 		{
 | |
| 		int ns = nfa_states[i];
 | |
| 		register int type = state_type[ns];
 | |
| 		register int ar = assoc_rule[ns];
 | |
| 
 | |
| 		if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE )
 | |
| 			{ /* do nothing */
 | |
| 			}
 | |
| 
 | |
| 		else if ( type == STATE_TRAILING_CONTEXT )
 | |
| 			{
 | |
| 			/* Potential trouble.  Scan set of accepting numbers
 | |
| 			 * for the one marking the end of the "head".  We
 | |
| 			 * assume that this looping will be fairly cheap
 | |
| 			 * since it's rare that an accepting number set
 | |
| 			 * is large.
 | |
| 			 */
 | |
| 			for ( j = 1; j <= nacc; ++j )
 | |
| 				if ( accset[j] & YY_TRAILING_HEAD_MASK )
 | |
| 					{
 | |
| 					line_warning(
 | |
| 					_( "dangerous trailing context" ),
 | |
| 						rule_linenum[ar] );
 | |
| 					return;
 | |
| 					}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* dump_associated_rules - list the rules associated with a DFA state
 | |
|  *
 | |
|  * Goes through the set of NFA states associated with the DFA and
 | |
|  * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
 | |
|  * and writes a report to the given file.
 | |
|  */
 | |
| 
 | |
| void dump_associated_rules( file, ds )
 | |
| FILE *file;
 | |
| int ds;
 | |
| 	{
 | |
| 	register int i, j;
 | |
| 	register int num_associated_rules = 0;
 | |
| 	int rule_set[MAX_ASSOC_RULES + 1];
 | |
| 	int *dset = dss[ds];
 | |
| 	int size = dfasiz[ds];
 | |
| 
 | |
| 	for ( i = 1; i <= size; ++i )
 | |
| 		{
 | |
| 		register int rule_num = rule_linenum[assoc_rule[dset[i]]];
 | |
| 
 | |
| 		for ( j = 1; j <= num_associated_rules; ++j )
 | |
| 			if ( rule_num == rule_set[j] )
 | |
| 				break;
 | |
| 
 | |
| 		if ( j > num_associated_rules )
 | |
| 			{ /* new rule */
 | |
| 			if ( num_associated_rules < MAX_ASSOC_RULES )
 | |
| 				rule_set[++num_associated_rules] = rule_num;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	bubble( rule_set, num_associated_rules );
 | |
| 
 | |
| 	fprintf( file, _( " associated rule line numbers:" ) );
 | |
| 
 | |
| 	for ( i = 1; i <= num_associated_rules; ++i )
 | |
| 		{
 | |
| 		if ( i % 8 == 1 )
 | |
| 			putc( '\n', file );
 | |
| 
 | |
| 		fprintf( file, "\t%d", rule_set[i] );
 | |
| 		}
 | |
| 
 | |
| 	putc( '\n', file );
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* dump_transitions - list the transitions associated with a DFA state
 | |
|  *
 | |
|  * synopsis
 | |
|  *     dump_transitions( FILE *file, int state[numecs] );
 | |
|  *
 | |
|  * Goes through the set of out-transitions and lists them in human-readable
 | |
|  * form (i.e., not as equivalence classes); also lists jam transitions
 | |
|  * (i.e., all those which are not out-transitions, plus EOF).  The dump
 | |
|  * is done to the given file.
 | |
|  */
 | |
| 
 | |
| void dump_transitions( file, state )
 | |
| FILE *file;
 | |
| int state[];
 | |
| 	{
 | |
| 	register int i, ec;
 | |
| 	int out_char_set[CSIZE];
 | |
| 
 | |
| 	for ( i = 0; i < csize; ++i )
 | |
| 		{
 | |
| 		ec = ABS( ecgroup[i] );
 | |
| 		out_char_set[i] = state[ec];
 | |
| 		}
 | |
| 
 | |
| 	fprintf( file, _( " out-transitions: " ) );
 | |
| 
 | |
| 	list_character_set( file, out_char_set );
 | |
| 
 | |
| 	/* now invert the members of the set to get the jam transitions */
 | |
| 	for ( i = 0; i < csize; ++i )
 | |
| 		out_char_set[i] = ! out_char_set[i];
 | |
| 
 | |
| 	fprintf( file, _( "\n jam-transitions: EOF " ) );
 | |
| 
 | |
| 	list_character_set( file, out_char_set );
 | |
| 
 | |
| 	putc( '\n', file );
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* epsclosure - construct the epsilon closure of a set of ndfa states
 | |
|  *
 | |
|  * synopsis
 | |
|  *    int *epsclosure( int t[num_states], int *numstates_addr,
 | |
|  *			int accset[num_rules+1], int *nacc_addr,
 | |
|  *			int *hashval_addr );
 | |
|  *
 | |
|  * NOTES
 | |
|  *  The epsilon closure is the set of all states reachable by an arbitrary
 | |
|  *  number of epsilon transitions, which themselves do not have epsilon
 | |
|  *  transitions going out, unioned with the set of states which have non-null
 | |
|  *  accepting numbers.  t is an array of size numstates of nfa state numbers.
 | |
|  *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
 | |
|  *  accset holds a list of the accepting numbers, and the size of accset is
 | |
|  *  given by *nacc_addr.  t may be subjected to reallocation if it is not
 | |
|  *  large enough to hold the epsilon closure.
 | |
|  *
 | |
|  *  hashval is the hash value for the dfa corresponding to the state set.
 | |
|  */
 | |
| 
 | |
| int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr )
 | |
| int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
 | |
| 	{
 | |
| 	register int stkpos, ns, tsp;
 | |
| 	int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
 | |
| 	int stkend, nstate;
 | |
| 	static int did_stk_init = false, *stk; 
 | |
| 
 | |
| #define MARK_STATE(state) \
 | |
| trans1[state] = trans1[state] - MARKER_DIFFERENCE;
 | |
| 
 | |
| #define IS_MARKED(state) (trans1[state] < 0)
 | |
| 
 | |
| #define UNMARK_STATE(state) \
 | |
| trans1[state] = trans1[state] + MARKER_DIFFERENCE;
 | |
| 
 | |
| #define CHECK_ACCEPT(state) \
 | |
| { \
 | |
| nfaccnum = accptnum[state]; \
 | |
| if ( nfaccnum != NIL ) \
 | |
| accset[++nacc] = nfaccnum; \
 | |
| }
 | |
| 
 | |
| #define DO_REALLOCATION \
 | |
| { \
 | |
| current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
 | |
| ++num_reallocs; \
 | |
| t = reallocate_integer_array( t, current_max_dfa_size ); \
 | |
| stk = reallocate_integer_array( stk, current_max_dfa_size ); \
 | |
| } \
 | |
| 
 | |
| #define PUT_ON_STACK(state) \
 | |
| { \
 | |
| if ( ++stkend >= current_max_dfa_size ) \
 | |
| DO_REALLOCATION \
 | |
| stk[stkend] = state; \
 | |
| MARK_STATE(state) \
 | |
| }
 | |
| 
 | |
| #define ADD_STATE(state) \
 | |
| { \
 | |
| if ( ++numstates >= current_max_dfa_size ) \
 | |
| DO_REALLOCATION \
 | |
| t[numstates] = state; \
 | |
| hashval += state; \
 | |
| }
 | |
| 
 | |
| #define STACK_STATE(state) \
 | |
| { \
 | |
| PUT_ON_STACK(state) \
 | |
| CHECK_ACCEPT(state) \
 | |
| if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
 | |
| ADD_STATE(state) \
 | |
| }
 | |
| 
 | |
| 
 | |
| 	if ( ! did_stk_init )
 | |
| 		{
 | |
| 		stk = allocate_integer_array( current_max_dfa_size );
 | |
| 		did_stk_init = true;
 | |
| 		}
 | |
| 
 | |
| 	nacc = stkend = hashval = 0;
 | |
| 
 | |
| 	for ( nstate = 1; nstate <= numstates; ++nstate )
 | |
| 		{
 | |
| 		ns = t[nstate];
 | |
| 
 | |
| 		/* The state could be marked if we've already pushed it onto
 | |
| 		 * the stack.
 | |
| 		 */
 | |
| 		if ( ! IS_MARKED(ns) )
 | |
| 			{
 | |
| 			PUT_ON_STACK(ns)
 | |
| 			CHECK_ACCEPT(ns)
 | |
| 			hashval += ns;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	for ( stkpos = 1; stkpos <= stkend; ++stkpos )
 | |
| 		{
 | |
| 		ns = stk[stkpos];
 | |
| 		transsym = transchar[ns];
 | |
| 
 | |
| 		if ( transsym == SYM_EPSILON )
 | |
| 			{
 | |
| 			tsp = trans1[ns] + MARKER_DIFFERENCE;
 | |
| 
 | |
| 			if ( tsp != NO_TRANSITION )
 | |
| 				{
 | |
| 				if ( ! IS_MARKED(tsp) )
 | |
| 					STACK_STATE(tsp)
 | |
| 
 | |
| 				tsp = trans2[ns];
 | |
| 
 | |
| 				if ( tsp != NO_TRANSITION && ! IS_MARKED(tsp) )
 | |
| 					STACK_STATE(tsp)
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	/* Clear out "visit" markers. */
 | |
| 
 | |
| 	for ( stkpos = 1; stkpos <= stkend; ++stkpos )
 | |
| 		{
 | |
| 		if ( IS_MARKED(stk[stkpos]) )
 | |
| 			UNMARK_STATE(stk[stkpos])
 | |
| 		else
 | |
| 			flexfatal(
 | |
| 			_( "consistency check failed in epsclosure()" ) );
 | |
| 		}
 | |
| 
 | |
| 	*ns_addr = numstates;
 | |
| 	*hv_addr = hashval;
 | |
| 	*nacc_addr = nacc;
 | |
| 
 | |
| 	return t;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* increase_max_dfas - increase the maximum number of DFAs */
 | |
| 
 | |
| void increase_max_dfas()
 | |
| 	{
 | |
| 	current_max_dfas += MAX_DFAS_INCREMENT;
 | |
| 
 | |
| 	++num_reallocs;
 | |
| 
 | |
| 	base = reallocate_integer_array( base, current_max_dfas );
 | |
| 	def = reallocate_integer_array( def, current_max_dfas );
 | |
| 	dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
 | |
| 	accsiz = reallocate_integer_array( accsiz, current_max_dfas );
 | |
| 	dhash = reallocate_integer_array( dhash, current_max_dfas );
 | |
| 	dss = reallocate_int_ptr_array( dss, current_max_dfas );
 | |
| 	dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
 | |
| 
 | |
| 	if ( nultrans )
 | |
| 		nultrans =
 | |
| 			reallocate_integer_array( nultrans, current_max_dfas );
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* ntod - convert an ndfa to a dfa
 | |
|  *
 | |
|  * Creates the dfa corresponding to the ndfa we've constructed.  The
 | |
|  * dfa starts out in state #1.
 | |
|  */
 | |
| 
 | |
| void ntod()
 | |
| 	{
 | |
| 	int *accset, ds, nacc, newds;
 | |
| 	int sym, hashval, numstates, dsize;
 | |
| 	int num_full_table_rows;	/* used only for -f */
 | |
| 	int *nset, *dset;
 | |
| 	int targptr, totaltrans, i, comstate, comfreq, targ;
 | |
| 	int symlist[CSIZE + 1];
 | |
| 	int num_start_states;
 | |
| 	int todo_head, todo_next;
 | |
| 
 | |
| 	/* Note that the following are indexed by *equivalence classes*
 | |
| 	 * and not by characters.  Since equivalence classes are indexed
 | |
| 	 * beginning with 1, even if the scanner accepts NUL's, this
 | |
| 	 * means that (since every character is potentially in its own
 | |
| 	 * equivalence class) these arrays must have room for indices
 | |
| 	 * from 1 to CSIZE, so their size must be CSIZE + 1.
 | |
| 	 */
 | |
| 	int duplist[CSIZE + 1], state[CSIZE + 1];
 | |
| 	int targfreq[CSIZE + 1], targstate[CSIZE + 1];
 | |
| 
 | |
| 	accset = allocate_integer_array( num_rules + 1 );
 | |
| 	nset = allocate_integer_array( current_max_dfa_size );
 | |
| 
 | |
| 	/* The "todo" queue is represented by the head, which is the DFA
 | |
| 	 * state currently being processed, and the "next", which is the
 | |
| 	 * next DFA state number available (not in use).  We depend on the
 | |
| 	 * fact that snstods() returns DFA's \in increasing order/, and thus
 | |
| 	 * need only know the bounds of the dfas to be processed.
 | |
| 	 */
 | |
| 	todo_head = todo_next = 0;
 | |
| 
 | |
| 	for ( i = 0; i <= csize; ++i )
 | |
| 		{
 | |
| 		duplist[i] = NIL;
 | |
| 		symlist[i] = false;
 | |
| 		}
 | |
| 
 | |
| 	for ( i = 0; i <= num_rules; ++i )
 | |
| 		accset[i] = NIL;
 | |
| 
 | |
| 	if ( trace )
 | |
| 		{
 | |
| 		dumpnfa( scset[1] );
 | |
| 		fputs( _( "\n\nDFA Dump:\n\n" ), stderr );
 | |
| 		}
 | |
| 
 | |
| 	inittbl();
 | |
| 
 | |
| 	/* Check to see whether we should build a separate table for
 | |
| 	 * transitions on NUL characters.  We don't do this for full-speed
 | |
| 	 * (-F) scanners, since for them we don't have a simple state
 | |
| 	 * number lying around with which to index the table.  We also
 | |
| 	 * don't bother doing it for scanners unless (1) NUL is in its own
 | |
| 	 * equivalence class (indicated by a positive value of
 | |
| 	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
 | |
| 	 * equivalence class, and (3) the number of equivalence classes is
 | |
| 	 * the same as the number of characters.  This latter case comes
 | |
| 	 * about when useecs is false or when it's true but every character
 | |
| 	 * still manages to land in its own class (unlikely, but it's
 | |
| 	 * cheap to check for).  If all these things are true then the
 | |
| 	 * character code needed to represent NUL's equivalence class for
 | |
| 	 * indexing the tables is going to take one more bit than the
 | |
| 	 * number of characters, and therefore we won't be assured of
 | |
| 	 * being able to fit it into a YY_CHAR variable.  This rules out
 | |
| 	 * storing the transitions in a compressed table, since the code
 | |
| 	 * for interpreting them uses a YY_CHAR variable (perhaps it
 | |
| 	 * should just use an integer, though; this is worth pondering ...
 | |
| 	 * ###).
 | |
| 	 *
 | |
| 	 * Finally, for full tables, we want the number of entries in the
 | |
| 	 * table to be a power of two so the array references go fast (it
 | |
| 	 * will just take a shift to compute the major index).  If
 | |
| 	 * encoding NUL's transitions in the table will spoil this, we
 | |
| 	 * give it its own table (note that this will be the case if we're
 | |
| 	 * not using equivalence classes).
 | |
| 	 */
 | |
| 
 | |
| 	/* Note that the test for ecgroup[0] == numecs below accomplishes
 | |
| 	 * both (1) and (2) above
 | |
| 	 */
 | |
| 	if ( ! fullspd && ecgroup[0] == numecs )
 | |
| 		{
 | |
| 		/* NUL is alone in its equivalence class, which is the
 | |
| 		 * last one.
 | |
| 		 */
 | |
| 		int use_NUL_table = (numecs == csize);
 | |
| 
 | |
| 		if ( fulltbl && ! use_NUL_table )
 | |
| 			{
 | |
| 			/* We still may want to use the table if numecs
 | |
| 			 * is a power of 2.
 | |
| 			 */
 | |
| 			int power_of_two;
 | |
| 
 | |
| 			for ( power_of_two = 1; power_of_two <= csize;
 | |
| 			      power_of_two *= 2 )
 | |
| 				if ( numecs == power_of_two )
 | |
| 					{
 | |
| 					use_NUL_table = true;
 | |
| 					break;
 | |
| 					}
 | |
| 			}
 | |
| 
 | |
| 		if ( use_NUL_table )
 | |
| 			nultrans = allocate_integer_array( current_max_dfas );
 | |
| 
 | |
| 		/* From now on, nultrans != nil indicates that we're
 | |
| 		 * saving null transitions for later, separate encoding.
 | |
| 		 */
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 	if ( fullspd )
 | |
| 		{
 | |
| 		for ( i = 0; i <= numecs; ++i )
 | |
| 			state[i] = 0;
 | |
| 
 | |
| 		place_state( state, 0, 0 );
 | |
| 		dfaacc[0].dfaacc_state = 0;
 | |
| 		}
 | |
| 
 | |
| 	else if ( fulltbl )
 | |
| 		{
 | |
| 		if ( nultrans )
 | |
| 			/* We won't be including NUL's transitions in the
 | |
| 			 * table, so build it for entries from 0 .. numecs - 1.
 | |
| 			 */
 | |
| 			num_full_table_rows = numecs;
 | |
| 
 | |
| 		else
 | |
| 			/* Take into account the fact that we'll be including
 | |
| 			 * the NUL entries in the transition table.  Build it
 | |
| 			 * from 0 .. numecs.
 | |
| 			 */
 | |
| 			num_full_table_rows = numecs + 1;
 | |
| 
 | |
| 		/* Unless -Ca, declare it "short" because it's a real
 | |
| 		 * long-shot that that won't be large enough.
 | |
| 		 */
 | |
| 		out_str_dec( "static yyconst %s yy_nxt[][%d] =\n    {\n",
 | |
| 			/* '}' so vi doesn't get too confused */
 | |
| 			long_align ? "long" : "short", num_full_table_rows );
 | |
| 
 | |
| 		outn( "    {" );
 | |
| 
 | |
| 		/* Generate 0 entries for state #0. */
 | |
| 		for ( i = 0; i < num_full_table_rows; ++i )
 | |
| 			mk2data( 0 );
 | |
| 
 | |
| 		dataflush();
 | |
| 		outn( "    },\n" );
 | |
| 		}
 | |
| 
 | |
| 	/* Create the first states. */
 | |
| 
 | |
| 	num_start_states = lastsc * 2;
 | |
| 
 | |
| 	for ( i = 1; i <= num_start_states; ++i )
 | |
| 		{
 | |
| 		numstates = 1;
 | |
| 
 | |
| 		/* For each start condition, make one state for the case when
 | |
| 		 * we're at the beginning of the line (the '^' operator) and
 | |
| 		 * one for the case when we're not.
 | |
| 		 */
 | |
| 		if ( i % 2 == 1 )
 | |
| 			nset[numstates] = scset[(i / 2) + 1];
 | |
| 		else
 | |
| 			nset[numstates] =
 | |
| 				mkbranch( scbol[i / 2], scset[i / 2] );
 | |
| 
 | |
| 		nset = epsclosure( nset, &numstates, accset, &nacc, &hashval );
 | |
| 
 | |
| 		if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) )
 | |
| 			{
 | |
| 			numas += nacc;
 | |
| 			totnst += numstates;
 | |
| 			++todo_next;
 | |
| 
 | |
| 			if ( variable_trailing_context_rules && nacc > 0 )
 | |
| 				check_trailing_context( nset, numstates,
 | |
| 							accset, nacc );
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	if ( ! fullspd )
 | |
| 		{
 | |
| 		if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) )
 | |
| 			flexfatal(
 | |
| 			_( "could not create unique end-of-buffer state" ) );
 | |
| 
 | |
| 		++numas;
 | |
| 		++num_start_states;
 | |
| 		++todo_next;
 | |
| 		}
 | |
| 
 | |
| 	while ( todo_head < todo_next )
 | |
| 		{
 | |
| 		targptr = 0;
 | |
| 		totaltrans = 0;
 | |
| 
 | |
| 		for ( i = 1; i <= numecs; ++i )
 | |
| 			state[i] = 0;
 | |
| 
 | |
| 		ds = ++todo_head;
 | |
| 
 | |
| 		dset = dss[ds];
 | |
| 		dsize = dfasiz[ds];
 | |
| 
 | |
| 		if ( trace )
 | |
| 			fprintf( stderr, _( "state # %d:\n" ), ds );
 | |
| 
 | |
| 		sympartition( dset, dsize, symlist, duplist );
 | |
| 
 | |
| 		for ( sym = 1; sym <= numecs; ++sym )
 | |
| 			{
 | |
| 			if ( symlist[sym] )
 | |
| 				{
 | |
| 				symlist[sym] = 0;
 | |
| 
 | |
| 				if ( duplist[sym] == NIL )
 | |
| 					{
 | |
| 					/* Symbol has unique out-transitions. */
 | |
| 					numstates = symfollowset( dset, dsize,
 | |
| 								sym, nset );
 | |
| 					nset = epsclosure( nset, &numstates,
 | |
| 						accset, &nacc, &hashval );
 | |
| 
 | |
| 					if ( snstods( nset, numstates, accset,
 | |
| 						nacc, hashval, &newds ) )
 | |
| 						{
 | |
| 						totnst = totnst + numstates;
 | |
| 						++todo_next;
 | |
| 						numas += nacc;
 | |
| 
 | |
| 						if (
 | |
| 					variable_trailing_context_rules &&
 | |
| 							nacc > 0 )
 | |
| 							check_trailing_context(
 | |
| 								nset, numstates,
 | |
| 								accset, nacc );
 | |
| 						}
 | |
| 
 | |
| 					state[sym] = newds;
 | |
| 
 | |
| 					if ( trace )
 | |
| 						fprintf( stderr, "\t%d\t%d\n",
 | |
| 							sym, newds );
 | |
| 
 | |
| 					targfreq[++targptr] = 1;
 | |
| 					targstate[targptr] = newds;
 | |
| 					++numuniq;
 | |
| 					}
 | |
| 
 | |
| 				else
 | |
| 					{
 | |
| 					/* sym's equivalence class has the same
 | |
| 					 * transitions as duplist(sym)'s
 | |
| 					 * equivalence class.
 | |
| 					 */
 | |
| 					targ = state[duplist[sym]];
 | |
| 					state[sym] = targ;
 | |
| 
 | |
| 					if ( trace )
 | |
| 						fprintf( stderr, "\t%d\t%d\n",
 | |
| 							sym, targ );
 | |
| 
 | |
| 					/* Update frequency count for
 | |
| 					 * destination state.
 | |
| 					 */
 | |
| 
 | |
| 					i = 0;
 | |
| 					while ( targstate[++i] != targ )
 | |
| 						;
 | |
| 
 | |
| 					++targfreq[i];
 | |
| 					++numdup;
 | |
| 					}
 | |
| 
 | |
| 				++totaltrans;
 | |
| 				duplist[sym] = NIL;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		if ( caseins && ! useecs )
 | |
| 			{
 | |
| 			register int j;
 | |
| 
 | |
| 			for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j )
 | |
| 				{
 | |
| 				if ( state[i] == 0 && state[j] != 0 )
 | |
| 					/* We're adding a transition. */
 | |
| 					++totaltrans;
 | |
| 
 | |
| 				else if ( state[i] != 0 && state[j] == 0 )
 | |
| 					/* We're taking away a transition. */
 | |
| 					--totaltrans;
 | |
| 
 | |
| 				state[i] = state[j];
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		numsnpairs += totaltrans;
 | |
| 
 | |
| 		if ( ds > num_start_states )
 | |
| 			check_for_backing_up( ds, state );
 | |
| 
 | |
| 		if ( nultrans )
 | |
| 			{
 | |
| 			nultrans[ds] = state[NUL_ec];
 | |
| 			state[NUL_ec] = 0;	/* remove transition */
 | |
| 			}
 | |
| 
 | |
| 		if ( fulltbl )
 | |
| 			{
 | |
| 			outn( "    {" );
 | |
| 
 | |
| 			/* Supply array's 0-element. */
 | |
| 			if ( ds == end_of_buffer_state )
 | |
| 				mk2data( -end_of_buffer_state );
 | |
| 			else
 | |
| 				mk2data( end_of_buffer_state );
 | |
| 
 | |
| 			for ( i = 1; i < num_full_table_rows; ++i )
 | |
| 				/* Jams are marked by negative of state
 | |
| 				 * number.
 | |
| 				 */
 | |
| 				mk2data( state[i] ? state[i] : -ds );
 | |
| 
 | |
| 			dataflush();
 | |
| 			outn( "    },\n" );
 | |
| 			}
 | |
| 
 | |
| 		else if ( fullspd )
 | |
| 			place_state( state, ds, totaltrans );
 | |
| 
 | |
| 		else if ( ds == end_of_buffer_state )
 | |
| 			/* Special case this state to make sure it does what
 | |
| 			 * it's supposed to, i.e., jam on end-of-buffer.
 | |
| 			 */
 | |
| 			stack1( ds, 0, 0, JAMSTATE );
 | |
| 
 | |
| 		else /* normal, compressed state */
 | |
| 			{
 | |
| 			/* Determine which destination state is the most
 | |
| 			 * common, and how many transitions to it there are.
 | |
| 			 */
 | |
| 
 | |
| 			comfreq = 0;
 | |
| 			comstate = 0;
 | |
| 
 | |
| 			for ( i = 1; i <= targptr; ++i )
 | |
| 				if ( targfreq[i] > comfreq )
 | |
| 					{
 | |
| 					comfreq = targfreq[i];
 | |
| 					comstate = targstate[i];
 | |
| 					}
 | |
| 
 | |
| 			bldtbl( state, ds, totaltrans, comstate, comfreq );
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	if ( fulltbl )
 | |
| 		dataend();
 | |
| 
 | |
| 	else if ( ! fullspd )
 | |
| 		{
 | |
| 		cmptmps();  /* create compressed template entries */
 | |
| 
 | |
| 		/* Create tables for all the states with only one
 | |
| 		 * out-transition.
 | |
| 		 */
 | |
| 		while ( onesp > 0 )
 | |
| 			{
 | |
| 			mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp],
 | |
| 			onedef[onesp] );
 | |
| 			--onesp;
 | |
| 			}
 | |
| 
 | |
| 		mkdeftbl();
 | |
| 		}
 | |
| 
 | |
| 	flex_free( (void *) accset );
 | |
| 	flex_free( (void *) nset );
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* snstods - converts a set of ndfa states into a dfa state
 | |
|  *
 | |
|  * synopsis
 | |
|  *    is_new_state = snstods( int sns[numstates], int numstates,
 | |
|  *				int accset[num_rules+1], int nacc,
 | |
|  *				int hashval, int *newds_addr );
 | |
|  *
 | |
|  * On return, the dfa state number is in newds.
 | |
|  */
 | |
| 
 | |
| int snstods( sns, numstates, accset, nacc, hashval, newds_addr )
 | |
| int sns[], numstates, accset[], nacc, hashval, *newds_addr;
 | |
| 	{
 | |
| 	int didsort = 0;
 | |
| 	register int i, j;
 | |
| 	int newds, *oldsns;
 | |
| 
 | |
| 	for ( i = 1; i <= lastdfa; ++i )
 | |
| 		if ( hashval == dhash[i] )
 | |
| 			{
 | |
| 			if ( numstates == dfasiz[i] )
 | |
| 				{
 | |
| 				oldsns = dss[i];
 | |
| 
 | |
| 				if ( ! didsort )
 | |
| 					{
 | |
| 					/* We sort the states in sns so we
 | |
| 					 * can compare it to oldsns quickly.
 | |
| 					 * We use bubble because there probably
 | |
| 					 * aren't very many states.
 | |
| 					 */
 | |
| 					bubble( sns, numstates );
 | |
| 					didsort = 1;
 | |
| 					}
 | |
| 
 | |
| 				for ( j = 1; j <= numstates; ++j )
 | |
| 					if ( sns[j] != oldsns[j] )
 | |
| 						break;
 | |
| 
 | |
| 				if ( j > numstates )
 | |
| 					{
 | |
| 					++dfaeql;
 | |
| 					*newds_addr = i;
 | |
| 					return 0;
 | |
| 					}
 | |
| 
 | |
| 				++hshcol;
 | |
| 				}
 | |
| 
 | |
| 			else
 | |
| 				++hshsave;
 | |
| 			}
 | |
| 
 | |
| 	/* Make a new dfa. */
 | |
| 
 | |
| 	if ( ++lastdfa >= current_max_dfas )
 | |
| 		increase_max_dfas();
 | |
| 
 | |
| 	newds = lastdfa;
 | |
| 
 | |
| 	dss[newds] = allocate_integer_array( numstates + 1 );
 | |
| 
 | |
| 	/* If we haven't already sorted the states in sns, we do so now,
 | |
| 	 * so that future comparisons with it can be made quickly.
 | |
| 	 */
 | |
| 
 | |
| 	if ( ! didsort )
 | |
| 		bubble( sns, numstates );
 | |
| 
 | |
| 	for ( i = 1; i <= numstates; ++i )
 | |
| 		dss[newds][i] = sns[i];
 | |
| 
 | |
| 	dfasiz[newds] = numstates;
 | |
| 	dhash[newds] = hashval;
 | |
| 
 | |
| 	if ( nacc == 0 )
 | |
| 		{
 | |
| 		if ( reject )
 | |
| 			dfaacc[newds].dfaacc_set = (int *) 0;
 | |
| 		else
 | |
| 			dfaacc[newds].dfaacc_state = 0;
 | |
| 
 | |
| 		accsiz[newds] = 0;
 | |
| 		}
 | |
| 
 | |
| 	else if ( reject )
 | |
| 		{
 | |
| 		/* We sort the accepting set in increasing order so the
 | |
| 		 * disambiguating rule that the first rule listed is considered
 | |
| 		 * match in the event of ties will work.  We use a bubble
 | |
| 		 * sort since the list is probably quite small.
 | |
| 		 */
 | |
| 
 | |
| 		bubble( accset, nacc );
 | |
| 
 | |
| 		dfaacc[newds].dfaacc_set = allocate_integer_array( nacc + 1 );
 | |
| 
 | |
| 		/* Save the accepting set for later */
 | |
| 		for ( i = 1; i <= nacc; ++i )
 | |
| 			{
 | |
| 			dfaacc[newds].dfaacc_set[i] = accset[i];
 | |
| 
 | |
| 			if ( accset[i] <= num_rules )
 | |
| 				/* Who knows, perhaps a REJECT can yield
 | |
| 				 * this rule.
 | |
| 				 */
 | |
| 				rule_useful[accset[i]] = true;
 | |
| 			}
 | |
| 
 | |
| 		accsiz[newds] = nacc;
 | |
| 		}
 | |
| 
 | |
| 	else
 | |
| 		{
 | |
| 		/* Find lowest numbered rule so the disambiguating rule
 | |
| 		 * will work.
 | |
| 		 */
 | |
| 		j = num_rules + 1;
 | |
| 
 | |
| 		for ( i = 1; i <= nacc; ++i )
 | |
| 			if ( accset[i] < j )
 | |
| 				j = accset[i];
 | |
| 
 | |
| 		dfaacc[newds].dfaacc_state = j;
 | |
| 
 | |
| 		if ( j <= num_rules )
 | |
| 			rule_useful[j] = true;
 | |
| 		}
 | |
| 
 | |
| 	*newds_addr = newds;
 | |
| 
 | |
| 	return 1;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* symfollowset - follow the symbol transitions one step
 | |
|  *
 | |
|  * synopsis
 | |
|  *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
 | |
|  *				int transsym, int nset[current_max_dfa_size] );
 | |
|  */
 | |
| 
 | |
| int symfollowset( ds, dsize, transsym, nset )
 | |
| int ds[], dsize, transsym, nset[];
 | |
| 	{
 | |
| 	int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
 | |
| 
 | |
| 	numstates = 0;
 | |
| 
 | |
| 	for ( i = 1; i <= dsize; ++i )
 | |
| 		{ /* for each nfa state ns in the state set of ds */
 | |
| 		ns = ds[i];
 | |
| 		sym = transchar[ns];
 | |
| 		tsp = trans1[ns];
 | |
| 
 | |
| 		if ( sym < 0 )
 | |
| 			{ /* it's a character class */
 | |
| 			sym = -sym;
 | |
| 			ccllist = cclmap[sym];
 | |
| 			lenccl = ccllen[sym];
 | |
| 
 | |
| 			if ( cclng[sym] )
 | |
| 				{
 | |
| 				for ( j = 0; j < lenccl; ++j )
 | |
| 					{
 | |
| 					/* Loop through negated character
 | |
| 					 * class.
 | |
| 					 */
 | |
| 					ch = ccltbl[ccllist + j];
 | |
| 
 | |
| 					if ( ch == 0 )
 | |
| 						ch = NUL_ec;
 | |
| 
 | |
| 					if ( ch > transsym )
 | |
| 						/* Transsym isn't in negated
 | |
| 						 * ccl.
 | |
| 						 */
 | |
| 						break;
 | |
| 
 | |
| 					else if ( ch == transsym )
 | |
| 						/* next 2 */ goto bottom;
 | |
| 					}
 | |
| 
 | |
| 				/* Didn't find transsym in ccl. */
 | |
| 				nset[++numstates] = tsp;
 | |
| 				}
 | |
| 
 | |
| 			else
 | |
| 				for ( j = 0; j < lenccl; ++j )
 | |
| 					{
 | |
| 					ch = ccltbl[ccllist + j];
 | |
| 
 | |
| 					if ( ch == 0 )
 | |
| 						ch = NUL_ec;
 | |
| 
 | |
| 					if ( ch > transsym )
 | |
| 						break;
 | |
| 					else if ( ch == transsym )
 | |
| 						{
 | |
| 						nset[++numstates] = tsp;
 | |
| 						break;
 | |
| 						}
 | |
| 					}
 | |
| 			}
 | |
| 
 | |
| 		else if ( sym >= 'A' && sym <= 'Z' && caseins )
 | |
| 			flexfatal(
 | |
| 			_( "consistency check failed in symfollowset" ) );
 | |
| 
 | |
| 		else if ( sym == SYM_EPSILON )
 | |
| 			{ /* do nothing */
 | |
| 			}
 | |
| 
 | |
| 		else if ( ABS( ecgroup[sym] ) == transsym )
 | |
| 			nset[++numstates] = tsp;
 | |
| 
 | |
| 		bottom: ;
 | |
| 		}
 | |
| 
 | |
| 	return numstates;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| /* sympartition - partition characters with same out-transitions
 | |
|  *
 | |
|  * synopsis
 | |
|  *    sympartition( int ds[current_max_dfa_size], int numstates,
 | |
|  *			int symlist[numecs], int duplist[numecs] );
 | |
|  */
 | |
| 
 | |
| void sympartition( ds, numstates, symlist, duplist )
 | |
| int ds[], numstates;
 | |
| int symlist[], duplist[];
 | |
| 	{
 | |
| 	int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
 | |
| 
 | |
| 	/* Partitioning is done by creating equivalence classes for those
 | |
| 	 * characters which have out-transitions from the given state.  Thus
 | |
| 	 * we are really creating equivalence classes of equivalence classes.
 | |
| 	 */
 | |
| 
 | |
| 	for ( i = 1; i <= numecs; ++i )
 | |
| 		{ /* initialize equivalence class list */
 | |
| 		duplist[i] = i - 1;
 | |
| 		dupfwd[i] = i + 1;
 | |
| 		}
 | |
| 
 | |
| 	duplist[1] = NIL;
 | |
| 	dupfwd[numecs] = NIL;
 | |
| 
 | |
| 	for ( i = 1; i <= numstates; ++i )
 | |
| 		{
 | |
| 		ns = ds[i];
 | |
| 		tch = transchar[ns];
 | |
| 
 | |
| 		if ( tch != SYM_EPSILON )
 | |
| 			{
 | |
| 			if ( tch < -lastccl || tch >= csize )
 | |
| 				{
 | |
| 				flexfatal(
 | |
| 		_( "bad transition character detected in sympartition()" ) );
 | |
| 				}
 | |
| 
 | |
| 			if ( tch >= 0 )
 | |
| 				{ /* character transition */
 | |
| 				int ec = ecgroup[tch];
 | |
| 
 | |
| 				mkechar( ec, dupfwd, duplist );
 | |
| 				symlist[ec] = 1;
 | |
| 				}
 | |
| 
 | |
| 			else
 | |
| 				{ /* character class */
 | |
| 				tch = -tch;
 | |
| 
 | |
| 				lenccl = ccllen[tch];
 | |
| 				cclp = cclmap[tch];
 | |
| 				mkeccl( ccltbl + cclp, lenccl, dupfwd,
 | |
| 					duplist, numecs, NUL_ec );
 | |
| 
 | |
| 				if ( cclng[tch] )
 | |
| 					{
 | |
| 					j = 0;
 | |
| 
 | |
| 					for ( k = 0; k < lenccl; ++k )
 | |
| 						{
 | |
| 						ich = ccltbl[cclp + k];
 | |
| 
 | |
| 						if ( ich == 0 )
 | |
| 							ich = NUL_ec;
 | |
| 
 | |
| 						for ( ++j; j < ich; ++j )
 | |
| 							symlist[j] = 1;
 | |
| 						}
 | |
| 
 | |
| 					for ( ++j; j <= numecs; ++j )
 | |
| 						symlist[j] = 1;
 | |
| 					}
 | |
| 
 | |
| 				else
 | |
| 					for ( k = 0; k < lenccl; ++k )
 | |
| 						{
 | |
| 						ich = ccltbl[cclp + k];
 | |
| 
 | |
| 						if ( ich == 0 )
 | |
| 							ich = NUL_ec;
 | |
| 
 | |
| 						symlist[ich] = 1;
 | |
| 						}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | 
