 b6cbf7203b
			
		
	
	
		b6cbf7203b
		
	
	
	
	
		
			
			This patch imports the unmodified current version of NetBSD libc. The NetBSD includes are in /nbsd_include, while the libc code itself is split between lib/nbsd_libc and common/lib/libc.
		
			
				
	
	
		
			1336 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1336 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: rb.c,v 1.9 2010/11/17 13:19:32 tron Exp $	*/
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c) 2001 The NetBSD Foundation, Inc.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This code is derived from software contributed to The NetBSD Foundation
 | |
|  * by Matt Thomas <matt@3am-software.com>.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
 | |
|  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 | |
|  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
 | |
|  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
|  * POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #if !defined(_KERNEL) && !defined(_STANDALONE)
 | |
| #include <sys/types.h>
 | |
| #include <stddef.h>
 | |
| #include <assert.h>
 | |
| #include <stdbool.h>
 | |
| #ifdef RBDEBUG
 | |
| #define	KASSERT(s)	assert(s)
 | |
| #else
 | |
| #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
 | |
| #endif
 | |
| #else
 | |
| #include <lib/libkern/libkern.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef _LIBC
 | |
| __weak_alias(rb_tree_init, _rb_tree_init)
 | |
| __weak_alias(rb_tree_find_node, _rb_tree_find_node)
 | |
| __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
 | |
| __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
 | |
| __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
 | |
| __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
 | |
| __weak_alias(rb_tree_iterate, _rb_tree_iterate)
 | |
| #ifdef RBDEBUG
 | |
| __weak_alias(rb_tree_check, _rb_tree_check)
 | |
| __weak_alias(rb_tree_depths, _rb_tree_depths)
 | |
| #endif
 | |
| 
 | |
| #include "namespace.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef RBTEST
 | |
| #include "rbtree.h"
 | |
| #else
 | |
| #include <sys/rbtree.h>
 | |
| #endif
 | |
| 
 | |
| static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
 | |
| static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
 | |
| 	unsigned int);
 | |
| #ifdef RBDEBUG
 | |
| static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
 | |
| 	const struct rb_node *, const unsigned int);
 | |
| static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
 | |
| 	const struct rb_node *, bool);
 | |
| #else
 | |
| #define	rb_tree_check_node(a, b, c, d)	true
 | |
| #endif
 | |
| 
 | |
| #define	RB_NODETOITEM(rbto, rbn)	\
 | |
|     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
 | |
| #define	RB_ITEMTONODE(rbto, rbn)	\
 | |
|     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
 | |
| 
 | |
| #define	RB_SENTINEL_NODE	NULL
 | |
| 
 | |
| void
 | |
| rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
 | |
| {
 | |
| 
 | |
| 	rbt->rbt_ops = ops;
 | |
| 	*((const struct rb_node **)&rbt->rbt_root) = RB_SENTINEL_NODE;
 | |
| 	RB_TAILQ_INIT(&rbt->rbt_nodes);
 | |
| #ifndef RBSMALL
 | |
| 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
 | |
| 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
 | |
| #endif
 | |
| #ifdef RBSTATS
 | |
| 	rbt->rbt_count = 0;
 | |
| 	rbt->rbt_insertions = 0;
 | |
| 	rbt->rbt_removals = 0;
 | |
| 	rbt->rbt_insertion_rebalance_calls = 0;
 | |
| 	rbt->rbt_insertion_rebalance_passes = 0;
 | |
| 	rbt->rbt_removal_rebalance_calls = 0;
 | |
| 	rbt->rbt_removal_rebalance_passes = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void *
 | |
| rb_tree_find_node(struct rb_tree *rbt, const void *key)
 | |
| {
 | |
| 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
 | |
| 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
 | |
| 	struct rb_node *parent = rbt->rbt_root;
 | |
| 
 | |
| 	while (!RB_SENTINEL_P(parent)) {
 | |
| 		void *pobj = RB_NODETOITEM(rbto, parent);
 | |
| 		const signed int diff = (*compare_key)(rbto->rbto_context,
 | |
| 		    pobj, key);
 | |
| 		if (diff == 0)
 | |
| 			return pobj;
 | |
| 		parent = parent->rb_nodes[diff < 0];
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void *
 | |
| rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
 | |
| {
 | |
| 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
 | |
| 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
 | |
| 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
 | |
| 
 | |
| 	while (!RB_SENTINEL_P(parent)) {
 | |
| 		void *pobj = RB_NODETOITEM(rbto, parent);
 | |
| 		const signed int diff = (*compare_key)(rbto->rbto_context,
 | |
| 		    pobj, key);
 | |
| 		if (diff == 0)
 | |
| 			return pobj;
 | |
| 		if (diff > 0)
 | |
| 			last = parent;
 | |
| 		parent = parent->rb_nodes[diff < 0];
 | |
| 	}
 | |
| 
 | |
| 	return RB_NODETOITEM(rbto, last);
 | |
| }
 | |
| 
 | |
| void *
 | |
| rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
 | |
| {
 | |
| 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
 | |
| 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
 | |
| 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
 | |
| 
 | |
| 	while (!RB_SENTINEL_P(parent)) {
 | |
| 		void *pobj = RB_NODETOITEM(rbto, parent);
 | |
| 		const signed int diff = (*compare_key)(rbto->rbto_context,
 | |
| 		    pobj, key);
 | |
| 		if (diff == 0)
 | |
| 			return pobj;
 | |
| 		if (diff < 0)
 | |
| 			last = parent;
 | |
| 		parent = parent->rb_nodes[diff < 0];
 | |
| 	}
 | |
| 
 | |
| 	return RB_NODETOITEM(rbto, last);
 | |
| }
 | |
| 
 | |
| void *
 | |
| rb_tree_insert_node(struct rb_tree *rbt, void *object)
 | |
| {
 | |
| 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
 | |
| 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
 | |
| 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
 | |
| 	unsigned int position;
 | |
| 	bool rebalance;
 | |
| 
 | |
| 	RBSTAT_INC(rbt->rbt_insertions);
 | |
| 
 | |
| 	tmp = rbt->rbt_root;
 | |
| 	/*
 | |
| 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
 | |
| 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
 | |
| 	 * avoid a lot of tests for root and know that even at root,
 | |
| 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
 | |
| 	 * update rbt->rbt_root.
 | |
| 	 */
 | |
| 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
 | |
| 	position = RB_DIR_LEFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find out where to place this new leaf.
 | |
| 	 */
 | |
| 	while (!RB_SENTINEL_P(tmp)) {
 | |
| 		void *tobj = RB_NODETOITEM(rbto, tmp);
 | |
| 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
 | |
| 		    tobj, object);
 | |
| 		if (__predict_false(diff == 0)) {
 | |
| 			/*
 | |
| 			 * Node already exists; return it.
 | |
| 			 */
 | |
| 			return tobj;
 | |
| 		}
 | |
| 		parent = tmp;
 | |
| 		position = (diff < 0);
 | |
| 		tmp = parent->rb_nodes[position];
 | |
| 	}
 | |
| 
 | |
| #ifdef RBDEBUG
 | |
| 	{
 | |
| 		struct rb_node *prev = NULL, *next = NULL;
 | |
| 
 | |
| 		if (position == RB_DIR_RIGHT)
 | |
| 			prev = parent;
 | |
| 		else if (tmp != rbt->rbt_root)
 | |
| 			next = parent;
 | |
| 
 | |
| 		/*
 | |
| 		 * Verify our sequential position
 | |
| 		 */
 | |
| 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
 | |
| 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
 | |
| 		if (prev != NULL && next == NULL)
 | |
| 			next = TAILQ_NEXT(prev, rb_link);
 | |
| 		if (prev == NULL && next != NULL)
 | |
| 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
 | |
| 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
 | |
| 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
 | |
| 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
 | |
| 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
 | |
| 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
 | |
| 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the node and insert as a leaf into the tree.
 | |
| 	 */
 | |
| 	RB_SET_FATHER(self, parent);
 | |
| 	RB_SET_POSITION(self, position);
 | |
| 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
 | |
| 		RB_MARK_BLACK(self);		/* root is always black */
 | |
| #ifndef RBSMALL
 | |
| 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
 | |
| 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
 | |
| #endif
 | |
| 		rebalance = false;
 | |
| 	} else {
 | |
| 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
 | |
| #ifndef RBSMALL
 | |
| 		/*
 | |
| 		 * Keep track of the minimum and maximum nodes.  If our
 | |
| 		 * parent is a minmax node and we on their min/max side,
 | |
| 		 * we must be the new min/max node.
 | |
| 		 */
 | |
| 		if (parent == rbt->rbt_minmax[position])
 | |
| 			rbt->rbt_minmax[position] = self;
 | |
| #endif /* !RBSMALL */
 | |
| 		/*
 | |
| 		 * All new nodes are colored red.  We only need to rebalance
 | |
| 		 * if our parent is also red.
 | |
| 		 */
 | |
| 		RB_MARK_RED(self);
 | |
| 		rebalance = RB_RED_P(parent);
 | |
| 	}
 | |
| 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
 | |
| 	self->rb_left = parent->rb_nodes[position];
 | |
| 	self->rb_right = parent->rb_nodes[position];
 | |
| 	parent->rb_nodes[position] = self;
 | |
| 	KASSERT(RB_CHILDLESS_P(self));
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert the new node into a sorted list for easy sequential access
 | |
| 	 */
 | |
| 	RBSTAT_INC(rbt->rbt_count);
 | |
| #ifdef RBDEBUG
 | |
| 	if (RB_ROOT_P(rbt, self)) {
 | |
| 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
 | |
| 	} else if (position == RB_DIR_LEFT) {
 | |
| 		KASSERT((*compare_nodes)(rbto->rbto_context,
 | |
| 		    RB_NODETOITEM(rbto, self),
 | |
| 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
 | |
| 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
 | |
| 	} else {
 | |
| 		KASSERT((*compare_nodes)(rbto->rbto_context,
 | |
| 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
 | |
| 		    RB_NODETOITEM(rbto, self)) < 0);
 | |
| 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
 | |
| 		    self, rb_link);
 | |
| 	}
 | |
| #endif
 | |
| 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
 | |
| 
 | |
| 	/*
 | |
| 	 * Rebalance tree after insertion
 | |
| 	 */
 | |
| 	if (rebalance) {
 | |
| 		rb_tree_insert_rebalance(rbt, self);
 | |
| 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
 | |
| 	}
 | |
| 
 | |
| 	/* Succesfully inserted, return our node pointer. */
 | |
| 	return object;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap the location and colors of 'self' and its child @ which.  The child
 | |
|  * can not be a sentinel node.  This is our rotation function.  However,
 | |
|  * since it preserves coloring, it great simplifies both insertion and
 | |
|  * removal since rotation almost always involves the exchanging of colors
 | |
|  * as a separate step.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| static void
 | |
| rb_tree_reparent_nodes(struct rb_tree *rbt, struct rb_node *old_father,
 | |
| 	const unsigned int which)
 | |
| {
 | |
| 	const unsigned int other = which ^ RB_DIR_OTHER;
 | |
| 	struct rb_node * const grandpa = RB_FATHER(old_father);
 | |
| 	struct rb_node * const old_child = old_father->rb_nodes[which];
 | |
| 	struct rb_node * const new_father = old_child;
 | |
| 	struct rb_node * const new_child = old_father;
 | |
| 
 | |
| 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
 | |
| 
 | |
| 	KASSERT(!RB_SENTINEL_P(old_child));
 | |
| 	KASSERT(RB_FATHER(old_child) == old_father);
 | |
| 
 | |
| 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
 | |
| 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
 | |
| 	KASSERT(RB_ROOT_P(rbt, old_father) ||
 | |
| 	    rb_tree_check_node(rbt, grandpa, NULL, false));
 | |
| 
 | |
| 	/*
 | |
| 	 * Exchange descendant linkages.
 | |
| 	 */
 | |
| 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
 | |
| 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
 | |
| 	new_father->rb_nodes[other] = new_child;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update ancestor linkages
 | |
| 	 */
 | |
| 	RB_SET_FATHER(new_father, grandpa);
 | |
| 	RB_SET_FATHER(new_child, new_father);
 | |
| 
 | |
| 	/*
 | |
| 	 * Exchange properties between new_father and new_child.  The only
 | |
| 	 * change is that new_child's position is now on the other side.
 | |
| 	 */
 | |
| #if 0
 | |
| 	{
 | |
| 		struct rb_node tmp;
 | |
| 		tmp.rb_info = 0;
 | |
| 		RB_COPY_PROPERTIES(&tmp, old_child);
 | |
| 		RB_COPY_PROPERTIES(new_father, old_father);
 | |
| 		RB_COPY_PROPERTIES(new_child, &tmp);
 | |
| 	}
 | |
| #else
 | |
| 	RB_SWAP_PROPERTIES(new_father, new_child);
 | |
| #endif
 | |
| 	RB_SET_POSITION(new_child, other);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure to reparent the new child to ourself.
 | |
| 	 */
 | |
| 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
 | |
| 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
 | |
| 		RB_SET_POSITION(new_child->rb_nodes[which], which);
 | |
| 	}
 | |
| 
 | |
| 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
 | |
| 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
 | |
| 	KASSERT(RB_ROOT_P(rbt, new_father) ||
 | |
| 	    rb_tree_check_node(rbt, grandpa, NULL, false));
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
 | |
| {
 | |
| 	struct rb_node * father = RB_FATHER(self);
 | |
| 	struct rb_node * grandpa = RB_FATHER(father);
 | |
| 	struct rb_node * uncle;
 | |
| 	unsigned int which;
 | |
| 	unsigned int other;
 | |
| 
 | |
| 	KASSERT(!RB_ROOT_P(rbt, self));
 | |
| 	KASSERT(RB_RED_P(self));
 | |
| 	KASSERT(RB_RED_P(father));
 | |
| 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		KASSERT(!RB_SENTINEL_P(self));
 | |
| 
 | |
| 		KASSERT(RB_RED_P(self));
 | |
| 		KASSERT(RB_RED_P(father));
 | |
| 		/*
 | |
| 		 * We are red and our parent is red, therefore we must have a
 | |
| 		 * grandfather and he must be black.
 | |
| 		 */
 | |
| 		grandpa = RB_FATHER(father);
 | |
| 		KASSERT(RB_BLACK_P(grandpa));
 | |
| 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
 | |
| 		which = (father == grandpa->rb_right);
 | |
| 		other = which ^ RB_DIR_OTHER;
 | |
| 		uncle = grandpa->rb_nodes[other];
 | |
| 
 | |
| 		if (RB_BLACK_P(uncle))
 | |
| 			break;
 | |
| 
 | |
| 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
 | |
| 		/*
 | |
| 		 * Case 1: our uncle is red
 | |
| 		 *   Simply invert the colors of our parent and
 | |
| 		 *   uncle and make our grandparent red.  And
 | |
| 		 *   then solve the problem up at his level.
 | |
| 		 */
 | |
| 		RB_MARK_BLACK(uncle);
 | |
| 		RB_MARK_BLACK(father);
 | |
| 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
 | |
| 			/*
 | |
| 			 * If our grandpa is root, don't bother
 | |
| 			 * setting him to red, just return.
 | |
| 			 */
 | |
| 			KASSERT(RB_BLACK_P(grandpa));
 | |
| 			return;
 | |
| 		}
 | |
| 		RB_MARK_RED(grandpa);
 | |
| 		self = grandpa;
 | |
| 		father = RB_FATHER(self);
 | |
| 		KASSERT(RB_RED_P(self));
 | |
| 		if (RB_BLACK_P(father)) {
 | |
| 			/*
 | |
| 			 * If our greatgrandpa is black, we're done.
 | |
| 			 */
 | |
| 			KASSERT(RB_BLACK_P(rbt->rbt_root));
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	KASSERT(!RB_ROOT_P(rbt, self));
 | |
| 	KASSERT(RB_RED_P(self));
 | |
| 	KASSERT(RB_RED_P(father));
 | |
| 	KASSERT(RB_BLACK_P(uncle));
 | |
| 	KASSERT(RB_BLACK_P(grandpa));
 | |
| 	/*
 | |
| 	 * Case 2&3: our uncle is black.
 | |
| 	 */
 | |
| 	if (self == father->rb_nodes[other]) {
 | |
| 		/*
 | |
| 		 * Case 2: we are on the same side as our uncle
 | |
| 		 *   Swap ourselves with our parent so this case
 | |
| 		 *   becomes case 3.  Basically our parent becomes our
 | |
| 		 *   child.
 | |
| 		 */
 | |
| 		rb_tree_reparent_nodes(rbt, father, other);
 | |
| 		KASSERT(RB_FATHER(father) == self);
 | |
| 		KASSERT(self->rb_nodes[which] == father);
 | |
| 		KASSERT(RB_FATHER(self) == grandpa);
 | |
| 		self = father;
 | |
| 		father = RB_FATHER(self);
 | |
| 	}
 | |
| 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
 | |
| 	KASSERT(grandpa->rb_nodes[which] == father);
 | |
| 	/*
 | |
| 	 * Case 3: we are opposite a child of a black uncle.
 | |
| 	 *   Swap our parent and grandparent.  Since our grandfather
 | |
| 	 *   is black, our father will become black and our new sibling
 | |
| 	 *   (former grandparent) will become red.
 | |
| 	 */
 | |
| 	rb_tree_reparent_nodes(rbt, grandpa, which);
 | |
| 	KASSERT(RB_FATHER(self) == father);
 | |
| 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
 | |
| 	KASSERT(RB_RED_P(self));
 | |
| 	KASSERT(RB_BLACK_P(father));
 | |
| 	KASSERT(RB_RED_P(grandpa));
 | |
| 
 | |
| 	/*
 | |
| 	 * Final step: Set the root to black.
 | |
| 	 */
 | |
| 	RB_MARK_BLACK(rbt->rbt_root);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
 | |
| {
 | |
| 	const unsigned int which = RB_POSITION(self);
 | |
| 	struct rb_node *father = RB_FATHER(self);
 | |
| #ifndef RBSMALL
 | |
| 	const bool was_root = RB_ROOT_P(rbt, self);
 | |
| #endif
 | |
| 
 | |
| 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
 | |
| 	KASSERT(!rebalance || RB_BLACK_P(self));
 | |
| 	KASSERT(RB_CHILDLESS_P(self));
 | |
| 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we are childless, we know that self->rb_left is pointing
 | |
| 	 * to the sentinel node.
 | |
| 	 */
 | |
| 	father->rb_nodes[which] = self->rb_left;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove ourselves from the node list, decrement the count,
 | |
| 	 * and update min/max.
 | |
| 	 */
 | |
| 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
 | |
| 	RBSTAT_DEC(rbt->rbt_count);
 | |
| #ifndef RBSMALL
 | |
| 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
 | |
| 		rbt->rbt_minmax[RB_POSITION(self)] = father;
 | |
| 		/*
 | |
| 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
 | |
| 		 * updated automatically, but we also need to update 
 | |
| 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
 | |
| 		 */
 | |
| 		if (__predict_false(was_root)) {
 | |
| 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
 | |
| 		}
 | |
| 	}
 | |
| 	RB_SET_FATHER(self, NULL);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Rebalance if requested.
 | |
| 	 */
 | |
| 	if (rebalance)
 | |
| 		rb_tree_removal_rebalance(rbt, father, which);
 | |
| 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When deleting an interior node
 | |
|  */
 | |
| static void
 | |
| rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
 | |
| 	struct rb_node *standin)
 | |
| {
 | |
| 	const unsigned int standin_which = RB_POSITION(standin);
 | |
| 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
 | |
| 	struct rb_node *standin_son;
 | |
| 	struct rb_node *standin_father = RB_FATHER(standin);
 | |
| 	bool rebalance = RB_BLACK_P(standin);
 | |
| 
 | |
| 	if (standin_father == self) {
 | |
| 		/*
 | |
| 		 * As a child of self, any childen would be opposite of
 | |
| 		 * our parent.
 | |
| 		 */
 | |
| 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
 | |
| 		standin_son = standin->rb_nodes[standin_which];
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Since we aren't a child of self, any childen would be
 | |
| 		 * on the same side as our parent.
 | |
| 		 */
 | |
| 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
 | |
| 		standin_son = standin->rb_nodes[standin_other];
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * the node we are removing must have two children.
 | |
| 	 */
 | |
| 	KASSERT(RB_TWOCHILDREN_P(self));
 | |
| 	/*
 | |
| 	 * If standin has a child, it must be red.
 | |
| 	 */
 | |
| 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify things are sane.
 | |
| 	 */
 | |
| 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
 | |
| 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
 | |
| 
 | |
| 	if (__predict_false(RB_RED_P(standin_son))) {
 | |
| 		/*
 | |
| 		 * We know we have a red child so if we flip it to black
 | |
| 		 * we don't have to rebalance.
 | |
| 		 */
 | |
| 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
 | |
| 		RB_MARK_BLACK(standin_son);
 | |
| 		rebalance = false;
 | |
| 
 | |
| 		if (standin_father == self) {
 | |
| 			KASSERT(RB_POSITION(standin_son) == standin_which);
 | |
| 		} else {
 | |
| 			KASSERT(RB_POSITION(standin_son) == standin_other);
 | |
| 			/*
 | |
| 			 * Change the son's parentage to point to his grandpa.
 | |
| 			 */
 | |
| 			RB_SET_FATHER(standin_son, standin_father);
 | |
| 			RB_SET_POSITION(standin_son, standin_which);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (standin_father == self) {
 | |
| 		/*
 | |
| 		 * If we are about to delete the standin's father, then when
 | |
| 		 * we call rebalance, we need to use ourselves as our father.
 | |
| 		 * Otherwise remember our original father.  Also, sincef we are
 | |
| 		 * our standin's father we only need to reparent the standin's
 | |
| 		 * brother.
 | |
| 		 *
 | |
| 		 * |    R      -->     S    |
 | |
| 		 * |  Q   S    -->   Q   T  |
 | |
| 		 * |        t  -->          |
 | |
| 		 */
 | |
| 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
 | |
| 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
 | |
| 		KASSERT(self->rb_nodes[standin_which] == standin);
 | |
| 		/*
 | |
| 		 * Have our son/standin adopt his brother as his new son.
 | |
| 		 */
 | |
| 		standin_father = standin;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * |    R          -->    S       .  |
 | |
| 		 * |   / \  |   T  -->   / \  |  /   |
 | |
| 		 * |  ..... | S    -->  ..... | T    |
 | |
| 		 *
 | |
| 		 * Sever standin's connection to his father.
 | |
| 		 */
 | |
| 		standin_father->rb_nodes[standin_which] = standin_son;
 | |
| 		/*
 | |
| 		 * Adopt the far son.
 | |
| 		 */
 | |
| 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
 | |
| 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
 | |
| 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
 | |
| 		/*
 | |
| 		 * Use standin_other because we need to preserve standin_which
 | |
| 		 * for the removal_rebalance.
 | |
| 		 */
 | |
| 		standin_other = standin_which;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the only remaining son to our standin.  If our standin is our
 | |
| 	 * son, this will be the only son needed to be moved.
 | |
| 	 */
 | |
| 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
 | |
| 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
 | |
| 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now copy the result of self to standin and then replace
 | |
| 	 * self with standin in the tree.
 | |
| 	 */
 | |
| 	RB_COPY_PROPERTIES(standin, self);
 | |
| 	RB_SET_FATHER(standin, RB_FATHER(self));
 | |
| 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove ourselves from the node list, decrement the count,
 | |
| 	 * and update min/max.
 | |
| 	 */
 | |
| 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
 | |
| 	RBSTAT_DEC(rbt->rbt_count);
 | |
| #ifndef RBSMALL
 | |
| 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
 | |
| 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
 | |
| 	RB_SET_FATHER(self, NULL);
 | |
| #endif
 | |
| 
 | |
| 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
 | |
| 	KASSERT(RB_FATHER_SENTINEL_P(standin)
 | |
| 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
 | |
| 	KASSERT(RB_LEFT_SENTINEL_P(standin)
 | |
| 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
 | |
| 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
 | |
| 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
 | |
| 
 | |
| 	if (!rebalance)
 | |
| 		return;
 | |
| 
 | |
| 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
 | |
| 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We could do this by doing
 | |
|  *	rb_tree_node_swap(rbt, self, which);
 | |
|  *	rb_tree_prune_node(rbt, self, false);
 | |
|  *
 | |
|  * But it's more efficient to just evalate and recolor the child.
 | |
|  */
 | |
| static void
 | |
| rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
 | |
| 	unsigned int which)
 | |
| {
 | |
| 	struct rb_node *father = RB_FATHER(self);
 | |
| 	struct rb_node *son = self->rb_nodes[which];
 | |
| #ifndef RBSMALL
 | |
| 	const bool was_root = RB_ROOT_P(rbt, self);
 | |
| #endif
 | |
| 
 | |
| 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
 | |
| 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
 | |
| 	KASSERT(!RB_TWOCHILDREN_P(son));
 | |
| 	KASSERT(RB_CHILDLESS_P(son));
 | |
| 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
 | |
| 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove ourselves from the tree and give our former child our
 | |
| 	 * properties (position, color, root).
 | |
| 	 */
 | |
| 	RB_COPY_PROPERTIES(son, self);
 | |
| 	father->rb_nodes[RB_POSITION(son)] = son;
 | |
| 	RB_SET_FATHER(son, father);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove ourselves from the node list, decrement the count,
 | |
| 	 * and update minmax.
 | |
| 	 */
 | |
| 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
 | |
| 	RBSTAT_DEC(rbt->rbt_count);
 | |
| #ifndef RBSMALL
 | |
| 	if (__predict_false(was_root)) {
 | |
| 		KASSERT(rbt->rbt_minmax[which] == son);
 | |
| 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
 | |
| 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
 | |
| 		rbt->rbt_minmax[RB_POSITION(self)] = son;
 | |
| 	}
 | |
| 	RB_SET_FATHER(self, NULL);
 | |
| #endif
 | |
| 
 | |
| 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
 | |
| 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_tree_remove_node(struct rb_tree *rbt, void *object)
 | |
| {
 | |
| 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
 | |
| 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
 | |
| 	unsigned int which;
 | |
| 
 | |
| 	KASSERT(!RB_SENTINEL_P(self));
 | |
| 	RBSTAT_INC(rbt->rbt_removals);
 | |
| 
 | |
| 	/*
 | |
| 	 * In the following diagrams, we (the node to be removed) are S.  Red
 | |
| 	 * nodes are lowercase.  T could be either red or black.
 | |
| 	 *
 | |
| 	 * Remember the major axiom of the red-black tree: the number of
 | |
| 	 * black nodes from the root to each leaf is constant across all
 | |
| 	 * leaves, only the number of red nodes varies.
 | |
| 	 *
 | |
| 	 * Thus removing a red leaf doesn't require any other changes to a
 | |
| 	 * red-black tree.  So if we must remove a node, attempt to rearrange
 | |
| 	 * the tree so we can remove a red node.
 | |
| 	 *
 | |
| 	 * The simpliest case is a childless red node or a childless root node:
 | |
| 	 *
 | |
| 	 * |    T  -->    T  |    or    |  R  -->  *  |
 | |
| 	 * |  s    -->  *    |
 | |
| 	 */
 | |
| 	if (RB_CHILDLESS_P(self)) {
 | |
| 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
 | |
| 		rb_tree_prune_node(rbt, self, rebalance);
 | |
| 		return;
 | |
| 	}
 | |
| 	KASSERT(!RB_CHILDLESS_P(self));
 | |
| 	if (!RB_TWOCHILDREN_P(self)) {
 | |
| 		/*
 | |
| 		 * The next simpliest case is the node we are deleting is
 | |
| 		 * black and has one red child.
 | |
| 		 *
 | |
| 		 * |      T  -->      T  -->      T  |
 | |
| 		 * |    S    -->  R      -->  R      |
 | |
| 		 * |  r      -->    s    -->    *    |
 | |
| 		 */
 | |
| 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
 | |
| 		KASSERT(RB_BLACK_P(self));
 | |
| 		KASSERT(RB_RED_P(self->rb_nodes[which]));
 | |
| 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
 | |
| 		rb_tree_prune_blackred_branch(rbt, self, which);
 | |
| 		return;
 | |
| 	}
 | |
| 	KASSERT(RB_TWOCHILDREN_P(self));
 | |
| 
 | |
| 	/*
 | |
| 	 * We invert these because we prefer to remove from the inside of
 | |
| 	 * the tree.
 | |
| 	 */
 | |
| 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's find the node closes to us opposite of our parent
 | |
| 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
 | |
| 	 */
 | |
| 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
 | |
| 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
 | |
| 	unsigned int which)
 | |
| {
 | |
| 	KASSERT(!RB_SENTINEL_P(parent));
 | |
| 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
 | |
| 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
 | |
| 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
 | |
| 
 | |
| 	while (RB_BLACK_P(parent->rb_nodes[which])) {
 | |
| 		unsigned int other = which ^ RB_DIR_OTHER;
 | |
| 		struct rb_node *brother = parent->rb_nodes[other];
 | |
| 
 | |
| 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
 | |
| 
 | |
| 		KASSERT(!RB_SENTINEL_P(brother));
 | |
| 		/*
 | |
| 		 * For cases 1, 2a, and 2b, our brother's children must
 | |
| 		 * be black and our father must be black
 | |
| 		 */
 | |
| 		if (RB_BLACK_P(parent)
 | |
| 		    && RB_BLACK_P(brother->rb_left)
 | |
| 		    && RB_BLACK_P(brother->rb_right)) {
 | |
| 			if (RB_RED_P(brother)) {
 | |
| 				/*
 | |
| 				 * Case 1: Our brother is red, swap its
 | |
| 				 * position (and colors) with our parent. 
 | |
| 				 * This should now be case 2b (unless C or E
 | |
| 				 * has a red child which is case 3; thus no
 | |
| 				 * explicit branch to case 2b).
 | |
| 				 *
 | |
| 				 *    B         ->        D
 | |
| 				 *  A     d     ->    b     E
 | |
| 				 *      C   E   ->  A   C
 | |
| 				 */
 | |
| 				KASSERT(RB_BLACK_P(parent));
 | |
| 				rb_tree_reparent_nodes(rbt, parent, other);
 | |
| 				brother = parent->rb_nodes[other];
 | |
| 				KASSERT(!RB_SENTINEL_P(brother));
 | |
| 				KASSERT(RB_RED_P(parent));
 | |
| 				KASSERT(RB_BLACK_P(brother));
 | |
| 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
 | |
| 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * Both our parent and brother are black.
 | |
| 				 * Change our brother to red, advance up rank
 | |
| 				 * and go through the loop again.
 | |
| 				 *
 | |
| 				 *    B         ->   *B
 | |
| 				 * *A     D     ->  A     d
 | |
| 				 *      C   E   ->      C   E
 | |
| 				 */
 | |
| 				RB_MARK_RED(brother);
 | |
| 				KASSERT(RB_BLACK_P(brother->rb_left));
 | |
| 				KASSERT(RB_BLACK_P(brother->rb_right));
 | |
| 				if (RB_ROOT_P(rbt, parent))
 | |
| 					return;	/* root == parent == black */
 | |
| 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
 | |
| 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
 | |
| 				which = RB_POSITION(parent);
 | |
| 				parent = RB_FATHER(parent);
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Avoid an else here so that case 2a above can hit either
 | |
| 		 * case 2b, 3, or 4.
 | |
| 		 */
 | |
| 		if (RB_RED_P(parent)
 | |
| 		    && RB_BLACK_P(brother)
 | |
| 		    && RB_BLACK_P(brother->rb_left)
 | |
| 		    && RB_BLACK_P(brother->rb_right)) {
 | |
| 			KASSERT(RB_RED_P(parent));
 | |
| 			KASSERT(RB_BLACK_P(brother));
 | |
| 			KASSERT(RB_BLACK_P(brother->rb_left));
 | |
| 			KASSERT(RB_BLACK_P(brother->rb_right));
 | |
| 			/*
 | |
| 			 * We are black, our father is red, our brother and
 | |
| 			 * both nephews are black.  Simply invert/exchange the
 | |
| 			 * colors of our father and brother (to black and red
 | |
| 			 * respectively).
 | |
| 			 *
 | |
| 			 *	|    f        -->    F        |
 | |
| 			 *	|  *     B    -->  *     b    |
 | |
| 			 *	|      N   N  -->      N   N  |
 | |
| 			 */
 | |
| 			RB_MARK_BLACK(parent);
 | |
| 			RB_MARK_RED(brother);
 | |
| 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
 | |
| 			break;		/* We're done! */
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Our brother must be black and have at least one
 | |
| 			 * red child (it may have two).
 | |
| 			 */
 | |
| 			KASSERT(RB_BLACK_P(brother));
 | |
| 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
 | |
| 				RB_RED_P(brother->rb_nodes[other]));
 | |
| 			if (RB_BLACK_P(brother->rb_nodes[other])) {
 | |
| 				/*
 | |
| 				 * Case 3: our brother is black, our near
 | |
| 				 * nephew is red, and our far nephew is black.
 | |
| 				 * Swap our brother with our near nephew.  
 | |
| 				 * This result in a tree that matches case 4.
 | |
| 				 * (Our father could be red or black).
 | |
| 				 *
 | |
| 				 *	|    F      -->    F      |
 | |
| 				 *	|  x     B  -->  x   B    |
 | |
| 				 *	|      n    -->        n  |
 | |
| 				 */
 | |
| 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
 | |
| 				rb_tree_reparent_nodes(rbt, brother, which);
 | |
| 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
 | |
| 				brother = parent->rb_nodes[other];
 | |
| 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Case 4: our brother is black and our far nephew
 | |
| 			 * is red.  Swap our father and brother locations and
 | |
| 			 * change our far nephew to black.  (these can be
 | |
| 			 * done in either order so we change the color first).
 | |
| 			 * The result is a valid red-black tree and is a
 | |
| 			 * terminal case.  (again we don't care about the
 | |
| 			 * father's color)
 | |
| 			 *
 | |
| 			 * If the father is red, we will get a red-black-black
 | |
| 			 * tree:
 | |
| 			 *	|  f      ->  f      -->    b    |
 | |
| 			 *	|    B    ->    B    -->  F   N  |
 | |
| 			 *	|      n  ->      N  -->         |
 | |
| 			 *
 | |
| 			 * If the father is black, we will get an all black
 | |
| 			 * tree:
 | |
| 			 *	|  F      ->  F      -->    B    |
 | |
| 			 *	|    B    ->    B    -->  F   N  |
 | |
| 			 *	|      n  ->      N  -->         |
 | |
| 			 *
 | |
| 			 * If we had two red nephews, then after the swap,
 | |
| 			 * our former father would have a red grandson. 
 | |
| 			 */
 | |
| 			KASSERT(RB_BLACK_P(brother));
 | |
| 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
 | |
| 			RB_MARK_BLACK(brother->rb_nodes[other]);
 | |
| 			rb_tree_reparent_nodes(rbt, parent, other);
 | |
| 			break;		/* We're done! */
 | |
| 		}
 | |
| 	}
 | |
| 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
 | |
| }
 | |
| 
 | |
| void *
 | |
| rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
 | |
| {
 | |
| 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
 | |
| 	const unsigned int other = direction ^ RB_DIR_OTHER;
 | |
| 	struct rb_node *self;
 | |
| 
 | |
| 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
 | |
| 
 | |
| 	if (object == NULL) {
 | |
| #ifndef RBSMALL
 | |
| 		if (RB_SENTINEL_P(rbt->rbt_root))
 | |
| 			return NULL;
 | |
| 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
 | |
| #else
 | |
| 		self = rbt->rbt_root;
 | |
| 		if (RB_SENTINEL_P(self))
 | |
| 			return NULL;
 | |
| 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
 | |
| 			self = self->rb_nodes[direction];
 | |
| 		return RB_NODETOITEM(rbto, self);
 | |
| #endif /* !RBSMALL */
 | |
| 	}
 | |
| 	self = RB_ITEMTONODE(rbto, object);
 | |
| 	KASSERT(!RB_SENTINEL_P(self));
 | |
| 	/*
 | |
| 	 * We can't go any further in this direction.  We proceed up in the
 | |
| 	 * opposite direction until our parent is in direction we want to go.
 | |
| 	 */
 | |
| 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
 | |
| 		while (!RB_ROOT_P(rbt, self)) {
 | |
| 			if (other == RB_POSITION(self))
 | |
| 				return RB_NODETOITEM(rbto, RB_FATHER(self));
 | |
| 			self = RB_FATHER(self);
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Advance down one in current direction and go down as far as possible
 | |
| 	 * in the opposite direction.
 | |
| 	 */
 | |
| 	self = self->rb_nodes[direction];
 | |
| 	KASSERT(!RB_SENTINEL_P(self));
 | |
| 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
 | |
| 		self = self->rb_nodes[other];
 | |
| 	return RB_NODETOITEM(rbto, self);
 | |
| }
 | |
| 
 | |
| #ifdef RBDEBUG
 | |
| static const struct rb_node *
 | |
| rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
 | |
| 	const unsigned int direction)
 | |
| {
 | |
| 	const unsigned int other = direction ^ RB_DIR_OTHER;
 | |
| 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
 | |
| 
 | |
| 	if (self == NULL) {
 | |
| #ifndef RBSMALL
 | |
| 		if (RB_SENTINEL_P(rbt->rbt_root))
 | |
| 			return NULL;
 | |
| 		return rbt->rbt_minmax[direction];
 | |
| #else
 | |
| 		self = rbt->rbt_root;
 | |
| 		if (RB_SENTINEL_P(self))
 | |
| 			return NULL;
 | |
| 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
 | |
| 			self = self->rb_nodes[direction];
 | |
| 		return self;
 | |
| #endif /* !RBSMALL */
 | |
| 	}
 | |
| 	KASSERT(!RB_SENTINEL_P(self));
 | |
| 	/*
 | |
| 	 * We can't go any further in this direction.  We proceed up in the
 | |
| 	 * opposite direction until our parent is in direction we want to go.
 | |
| 	 */
 | |
| 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
 | |
| 		while (!RB_ROOT_P(rbt, self)) {
 | |
| 			if (other == RB_POSITION(self))
 | |
| 				return RB_FATHER(self);
 | |
| 			self = RB_FATHER(self);
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Advance down one in current direction and go down as far as possible
 | |
| 	 * in the opposite direction.
 | |
| 	 */
 | |
| 	self = self->rb_nodes[direction];
 | |
| 	KASSERT(!RB_SENTINEL_P(self));
 | |
| 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
 | |
| 		self = self->rb_nodes[other];
 | |
| 	return self;
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| rb_tree_count_black(const struct rb_node *self)
 | |
| {
 | |
| 	unsigned int left, right;
 | |
| 
 | |
| 	if (RB_SENTINEL_P(self))
 | |
| 		return 0;
 | |
| 
 | |
| 	left = rb_tree_count_black(self->rb_left);
 | |
| 	right = rb_tree_count_black(self->rb_right);
 | |
| 
 | |
| 	KASSERT(left == right);
 | |
| 
 | |
| 	return left + RB_BLACK_P(self);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
 | |
| 	const struct rb_node *prev, bool red_check)
 | |
| {
 | |
| 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
 | |
| 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
 | |
| 
 | |
| 	KASSERT(!RB_SENTINEL_P(self));
 | |
| 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
 | |
| 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify our relationship to our parent.
 | |
| 	 */
 | |
| 	if (RB_ROOT_P(rbt, self)) {
 | |
| 		KASSERT(self == rbt->rbt_root);
 | |
| 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
 | |
| 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
 | |
| 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
 | |
| 	} else {
 | |
| 		int diff = (*compare_nodes)(rbto->rbto_context,
 | |
| 		    RB_NODETOITEM(rbto, self),
 | |
| 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
 | |
| 
 | |
| 		KASSERT(self != rbt->rbt_root);
 | |
| 		KASSERT(!RB_FATHER_SENTINEL_P(self));
 | |
| 		if (RB_POSITION(self) == RB_DIR_LEFT) {
 | |
| 			KASSERT(diff < 0);
 | |
| 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
 | |
| 		} else {
 | |
| 			KASSERT(diff > 0);
 | |
| 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify our position in the linked list against the tree itself.
 | |
| 	 */
 | |
| 	{
 | |
| 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
 | |
| 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
 | |
| 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
 | |
| 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
 | |
| #ifndef RBSMALL
 | |
| 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
 | |
| 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The root must be black.
 | |
| 	 * There can never be two adjacent red nodes. 
 | |
| 	 */
 | |
| 	if (red_check) {
 | |
| 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
 | |
| 		(void) rb_tree_count_black(self);
 | |
| 		if (RB_RED_P(self)) {
 | |
| 			const struct rb_node *brother;
 | |
| 			KASSERT(!RB_ROOT_P(rbt, self));
 | |
| 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
 | |
| 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
 | |
| 			/* 
 | |
| 			 * I'm red and have no children, then I must either
 | |
| 			 * have no brother or my brother also be red and
 | |
| 			 * also have no children.  (black count == 0)
 | |
| 			 */
 | |
| 			KASSERT(!RB_CHILDLESS_P(self)
 | |
| 				|| RB_SENTINEL_P(brother)
 | |
| 				|| RB_RED_P(brother)
 | |
| 				|| RB_CHILDLESS_P(brother));
 | |
| 			/*
 | |
| 			 * If I'm not childless, I must have two children
 | |
| 			 * and they must be both be black.
 | |
| 			 */
 | |
| 			KASSERT(RB_CHILDLESS_P(self)
 | |
| 				|| (RB_TWOCHILDREN_P(self)
 | |
| 				    && RB_BLACK_P(self->rb_left)
 | |
| 				    && RB_BLACK_P(self->rb_right)));
 | |
| 			/*
 | |
| 			 * If I'm not childless, thus I have black children,
 | |
| 			 * then my brother must either be black or have two
 | |
| 			 * black children.
 | |
| 			 */
 | |
| 			KASSERT(RB_CHILDLESS_P(self)
 | |
| 				|| RB_BLACK_P(brother)
 | |
| 				|| (RB_TWOCHILDREN_P(brother)
 | |
| 				    && RB_BLACK_P(brother->rb_left)
 | |
| 				    && RB_BLACK_P(brother->rb_right)));
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If I'm black and have one child, that child must
 | |
| 			 * be red and childless.
 | |
| 			 */
 | |
| 			KASSERT(RB_CHILDLESS_P(self)
 | |
| 				|| RB_TWOCHILDREN_P(self)
 | |
| 				|| (!RB_LEFT_SENTINEL_P(self)
 | |
| 				    && RB_RIGHT_SENTINEL_P(self)
 | |
| 				    && RB_RED_P(self->rb_left)
 | |
| 				    && RB_CHILDLESS_P(self->rb_left))
 | |
| 				|| (!RB_RIGHT_SENTINEL_P(self)
 | |
| 				    && RB_LEFT_SENTINEL_P(self)
 | |
| 				    && RB_RED_P(self->rb_right)
 | |
| 				    && RB_CHILDLESS_P(self->rb_right)));
 | |
| 
 | |
| 			/*
 | |
| 			 * If I'm a childless black node and my parent is
 | |
| 			 * black, my 2nd closet relative away from my parent
 | |
| 			 * is either red or has a red parent or red children.
 | |
| 			 */
 | |
| 			if (!RB_ROOT_P(rbt, self)
 | |
| 			    && RB_CHILDLESS_P(self)
 | |
| 			    && RB_BLACK_P(RB_FATHER(self))) {
 | |
| 				const unsigned int which = RB_POSITION(self);
 | |
| 				const unsigned int other = which ^ RB_DIR_OTHER;
 | |
| 				const struct rb_node *relative0, *relative;
 | |
| 
 | |
| 				relative0 = rb_tree_iterate_const(rbt,
 | |
| 				    self, other);
 | |
| 				KASSERT(relative0 != NULL);
 | |
| 				relative = rb_tree_iterate_const(rbt,
 | |
| 				    relative0, other);
 | |
| 				KASSERT(relative != NULL);
 | |
| 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
 | |
| #if 0
 | |
| 				KASSERT(RB_RED_P(relative)
 | |
| 					|| RB_RED_P(relative->rb_left)
 | |
| 					|| RB_RED_P(relative->rb_right)
 | |
| 					|| RB_RED_P(RB_FATHER(relative)));
 | |
| #endif
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * A grandparent's children must be real nodes and not
 | |
| 		 * sentinels.  First check out grandparent.
 | |
| 		 */
 | |
| 		KASSERT(RB_ROOT_P(rbt, self)
 | |
| 			|| RB_ROOT_P(rbt, RB_FATHER(self))
 | |
| 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
 | |
| 		/*
 | |
| 		 * If we are have grandchildren on our left, then
 | |
| 		 * we must have a child on our right.
 | |
| 		 */
 | |
| 		KASSERT(RB_LEFT_SENTINEL_P(self)
 | |
| 			|| RB_CHILDLESS_P(self->rb_left)
 | |
| 			|| !RB_RIGHT_SENTINEL_P(self));
 | |
| 		/*
 | |
| 		 * If we are have grandchildren on our right, then
 | |
| 		 * we must have a child on our left.
 | |
| 		 */
 | |
| 		KASSERT(RB_RIGHT_SENTINEL_P(self)
 | |
| 			|| RB_CHILDLESS_P(self->rb_right)
 | |
| 			|| !RB_LEFT_SENTINEL_P(self));
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have a child on the left and it doesn't have two
 | |
| 		 * children make sure we don't have great-great-grandchildren on
 | |
| 		 * the right.
 | |
| 		 */
 | |
| 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
 | |
| 			|| RB_CHILDLESS_P(self->rb_right)
 | |
| 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
 | |
| 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
 | |
| 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
 | |
| 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
 | |
| 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
 | |
| 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have a child on the right and it doesn't have two
 | |
| 		 * children make sure we don't have great-great-grandchildren on
 | |
| 		 * the left.
 | |
| 		 */
 | |
| 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
 | |
| 			|| RB_CHILDLESS_P(self->rb_left)
 | |
| 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
 | |
| 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
 | |
| 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
 | |
| 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
 | |
| 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
 | |
| 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
 | |
| 
 | |
| 		/*
 | |
| 		 * If we are fully interior node, then our predecessors and
 | |
| 		 * successors must have no children in our direction.
 | |
| 		 */
 | |
| 		if (RB_TWOCHILDREN_P(self)) {
 | |
| 			const struct rb_node *prev0;
 | |
| 			const struct rb_node *next0;
 | |
| 
 | |
| 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
 | |
| 			KASSERT(prev0 != NULL);
 | |
| 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
 | |
| 
 | |
| 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
 | |
| 			KASSERT(next0 != NULL);
 | |
| 			KASSERT(RB_LEFT_SENTINEL_P(next0));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_tree_check(const struct rb_tree *rbt, bool red_check)
 | |
| {
 | |
| 	const struct rb_node *self;
 | |
| 	const struct rb_node *prev;
 | |
| #ifdef RBSTATS
 | |
| 	unsigned int count = 0;
 | |
| #endif
 | |
| 
 | |
| 	KASSERT(rbt->rbt_root != NULL);
 | |
| 	KASSERT(RB_LEFT_P(rbt->rbt_root));
 | |
| 
 | |
| #if defined(RBSTATS) && !defined(RBSMALL)
 | |
| 	KASSERT(rbt->rbt_count > 1
 | |
| 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
 | |
| #endif
 | |
| 
 | |
| 	prev = NULL;
 | |
| 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
 | |
| 		rb_tree_check_node(rbt, self, prev, false);
 | |
| #ifdef RBSTATS
 | |
| 		count++;
 | |
| #endif
 | |
| 	}
 | |
| #ifdef RBSTATS
 | |
| 	KASSERT(rbt->rbt_count == count);
 | |
| #endif
 | |
| 	if (red_check) {
 | |
| 		KASSERT(RB_BLACK_P(rbt->rbt_root));
 | |
| 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
 | |
| 			|| rb_tree_count_black(rbt->rbt_root));
 | |
| 
 | |
| 		/*
 | |
| 		 * The root must be black.
 | |
| 		 * There can never be two adjacent red nodes. 
 | |
| 		 */
 | |
| 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
 | |
| 			rb_tree_check_node(rbt, self, NULL, true);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif /* RBDEBUG */
 | |
| 
 | |
| #ifdef RBSTATS
 | |
| static void
 | |
| rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
 | |
| 	size_t *depths, size_t depth)
 | |
| {
 | |
| 	if (RB_SENTINEL_P(self))
 | |
| 		return;
 | |
| 
 | |
| 	if (RB_TWOCHILDREN_P(self)) {
 | |
| 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
 | |
| 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
 | |
| 		return;
 | |
| 	}
 | |
| 	depths[depth]++;
 | |
| 	if (!RB_LEFT_SENTINEL_P(self)) {
 | |
| 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
 | |
| 	}
 | |
| 	if (!RB_RIGHT_SENTINEL_P(self)) {
 | |
| 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
 | |
| {
 | |
| 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
 | |
| }
 | |
| #endif /* RBSTATS */
 |