 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			372 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: hdtoa.c,v 1.9 2011/07/04 11:46:41 mrg Exp $	*/
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c) 2004, 2005 David Schultz <das@FreeBSD.ORG>
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| #if 0
 | |
| __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
 | |
| #else
 | |
| __RCSID("$NetBSD: hdtoa.c,v 1.9 2011/07/04 11:46:41 mrg Exp $");
 | |
| #endif
 | |
| 
 | |
| #include <float.h>
 | |
| #include <limits.h>
 | |
| #include <math.h>
 | |
| #ifndef __vax__
 | |
| #include <machine/ieee.h>
 | |
| #else
 | |
| #include <machine/vaxfp.h>
 | |
| #define ieee_double_u vax_dfloating_u
 | |
| #define dblu_d dfltu_d
 | |
| #define dblu_dbl dfltu_dflt
 | |
| #define dbl_sign dflt_sign
 | |
| #define dbl_exp dflt_exp
 | |
| #define dbl_frach dflt_frach
 | |
| #define dbl_fracm dflt_fracm
 | |
| #define dbl_fracl dflt_fracl
 | |
| #define DBL_FRACHBITS	DFLT_FRACHBITS
 | |
| #define DBL_FRACMBITS	DFLT_FRACMBITS
 | |
| #define DBL_FRACLBITS	DFLT_FRACLBITS
 | |
| #define DBL_EXPBITS	DFLT_EXPBITS
 | |
| #endif
 | |
| #include "gdtoaimp.h"
 | |
| 
 | |
| /* Strings values used by dtoa() */
 | |
| #define	INFSTR	"Infinity"
 | |
| #define	NANSTR	"NaN"
 | |
| 
 | |
| #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
 | |
| #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
 | |
| 
 | |
| /*
 | |
|  * Round up the given digit string.  If the digit string is fff...f,
 | |
|  * this procedure sets it to 100...0 and returns 1 to indicate that
 | |
|  * the exponent needs to be bumped.  Otherwise, 0 is returned.
 | |
|  */
 | |
| static int
 | |
| roundup(char *s0, int ndigits)
 | |
| {
 | |
| 	char *s;
 | |
| 
 | |
| 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
 | |
| 		if (s == s0) {
 | |
| 			*s = 1;
 | |
| 			return (1);
 | |
| 		}
 | |
| 		*s = 0;
 | |
| 	}
 | |
| 	++*s;
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Round the given digit string to ndigits digits according to the
 | |
|  * current rounding mode.  Note that this could produce a string whose
 | |
|  * value is not representable in the corresponding floating-point
 | |
|  * type.  The exponent pointed to by decpt is adjusted if necessary.
 | |
|  */
 | |
| static void
 | |
| dorounding(char *s0, int ndigits, int sign, int *decpt)
 | |
| {
 | |
| 	int adjust = 0;	/* do we need to adjust the exponent? */
 | |
| 
 | |
| 	switch (FLT_ROUNDS) {
 | |
| 	case 0:		/* toward zero */
 | |
| 	default:	/* implementation-defined */
 | |
| 		break;
 | |
| 	case 1:		/* to nearest, halfway rounds to even */
 | |
| 		if ((s0[ndigits] > 8) ||
 | |
| 		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
 | |
| 			adjust = roundup(s0, ndigits);
 | |
| 		break;
 | |
| 	case 2:		/* toward +inf */
 | |
| 		if (sign == 0)
 | |
| 			adjust = roundup(s0, ndigits);
 | |
| 		break;
 | |
| 	case 3:		/* toward -inf */
 | |
| 		if (sign != 0)
 | |
| 			adjust = roundup(s0, ndigits);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (adjust)
 | |
| 		*decpt += 4;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This procedure converts a double-precision number in IEEE format
 | |
|  * into a string of hexadecimal digits and an exponent of 2.  Its
 | |
|  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
 | |
|  * following exceptions:
 | |
|  *
 | |
|  * - An ndigits < 0 causes it to use as many digits as necessary to
 | |
|  *   represent the number exactly.
 | |
|  * - The additional xdigs argument should point to either the string
 | |
|  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
 | |
|  *   which case is desired.
 | |
|  * - This routine does not repeat dtoa's mistake of setting decpt
 | |
|  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
 | |
|  *   for this purpose instead.
 | |
|  *
 | |
|  * Note that the C99 standard does not specify what the leading digit
 | |
|  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
 | |
|  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
 | |
|  * first digit so that subsequent digits are aligned on nibble
 | |
|  * boundaries (before rounding).
 | |
|  *
 | |
|  * Inputs:	d, xdigs, ndigits
 | |
|  * Outputs:	decpt, sign, rve
 | |
|  */
 | |
| char *
 | |
| hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
 | |
|     char **rve)
 | |
| {
 | |
| 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
 | |
| 	union ieee_double_u u;
 | |
| 	char *s, *s0;
 | |
| 	size_t bufsize;
 | |
| 
 | |
| 	u.dblu_d = d;
 | |
| 	*sign = u.dblu_dbl.dbl_sign;
 | |
| 
 | |
| 	switch (fpclassify(d)) {
 | |
| 	case FP_NORMAL:
 | |
| 		*decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
 | |
| 		break;
 | |
| 	case FP_ZERO:
 | |
| 		*decpt = 1;
 | |
| 		return (nrv_alloc("0", rve, 1));
 | |
| 	case FP_SUBNORMAL:
 | |
| #ifdef __vax__
 | |
| 		/* (DBL_MAX_EXP=127 / 2) + 2 = 65? */
 | |
| 		u.dblu_d *= 0x1p65;
 | |
| 		*decpt = u.dblu_dbl.dbl_exp - (65 + DBL_ADJ);
 | |
| #else
 | |
| 		/* (DBL_MAX_EXP=1024 / 2) + 2 = 514? */
 | |
| 		u.dblu_d *= 0x1p514;
 | |
| 		*decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
 | |
| #endif
 | |
| 		break;
 | |
| 	case FP_INFINITE:
 | |
| 		*decpt = INT_MAX;
 | |
| 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
 | |
| 	case FP_NAN:
 | |
| 		*decpt = INT_MAX;
 | |
| 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
 | |
| 	default:
 | |
| 		abort();
 | |
| 	}
 | |
| 
 | |
| 	/* FP_NORMAL or FP_SUBNORMAL */
 | |
| 
 | |
| 	if (ndigits == 0)		/* dtoa() compatibility */
 | |
| 		ndigits = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * For simplicity, we generate all the digits even if the
 | |
| 	 * caller has requested fewer.
 | |
| 	 */
 | |
| 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
 | |
| 	s0 = rv_alloc(bufsize);
 | |
| 	if (s0 == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We work from right to left, first adding any requested zero
 | |
| 	 * padding, then the least significant portion of the
 | |
| 	 * mantissa, followed by the most significant.  The buffer is
 | |
| 	 * filled with the byte values 0x0 through 0xf, which are
 | |
| 	 * converted to xdigs[0x0] through xdigs[0xf] after the
 | |
| 	 * rounding phase.
 | |
| 	 */
 | |
| 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
 | |
| 		*s = 0;
 | |
| 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
 | |
| 		*s = u.dblu_dbl.dbl_fracl & 0xf;
 | |
| 		u.dblu_dbl.dbl_fracl >>= 4;
 | |
| 	}
 | |
| #ifdef DBL_FRACMBITS
 | |
| 	for (; s > s0; s--) {
 | |
| 		*s = u.dblu_dbl.dbl_fracm & 0xf;
 | |
| 		u.dblu_dbl.dbl_fracm >>= 4;
 | |
| 	}
 | |
| #endif
 | |
| 	for (; s > s0; s--) {
 | |
| 		*s = u.dblu_dbl.dbl_frach & 0xf;
 | |
| 		u.dblu_dbl.dbl_frach >>= 4;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, we have snarfed all the bits in the
 | |
| 	 * mantissa, with the possible exception of the highest-order
 | |
| 	 * (partial) nibble, which is dealt with by the next
 | |
| 	 * statement.  We also tack on the implicit normalization bit.
 | |
| 	 */
 | |
| 	*s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
 | |
| 
 | |
| 	/* If ndigits < 0, we are expected to auto-size the precision. */
 | |
| 	if (ndigits < 0) {
 | |
| 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
 | |
| 			continue;
 | |
| 	}
 | |
| 
 | |
| 	if (sigfigs > ndigits && s0[ndigits] != 0)
 | |
| 		dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
 | |
| 
 | |
| 	s = s0 + ndigits;
 | |
| 	if (rve != NULL)
 | |
| 		*rve = s;
 | |
| 	*s-- = '\0';
 | |
| 	for (; s >= s0; s--)
 | |
| 		*s = xdigs[(unsigned int)*s];
 | |
| 
 | |
| 	return (s0);
 | |
| }
 | |
| 
 | |
| #if (LDBL_MANT_DIG > DBL_MANT_DIG)
 | |
| 
 | |
| /*
 | |
|  * This is the long double version of hdtoa().
 | |
|  */
 | |
| char *
 | |
| hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
 | |
|     char **rve)
 | |
| {
 | |
| 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
 | |
| 	union ieee_ext_u u;
 | |
| 	char *s, *s0;
 | |
| 	size_t bufsize;
 | |
| 
 | |
| 	memset(&u, 0, sizeof u);
 | |
| 	u.extu_ld = e;
 | |
| 	*sign = u.extu_ext.ext_sign;
 | |
| 
 | |
| 	switch (fpclassify(e)) {
 | |
| 	case FP_NORMAL:
 | |
| 		*decpt = u.extu_ext.ext_exp - LDBL_ADJ;
 | |
| 		break;
 | |
| 	case FP_ZERO:
 | |
| 		*decpt = 1;
 | |
| 		return (nrv_alloc("0", rve, 1));
 | |
| 	case FP_SUBNORMAL:
 | |
| 		u.extu_ld *= 0x1p514L;
 | |
| 		*decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
 | |
| 		break;
 | |
| 	case FP_INFINITE:
 | |
| 		*decpt = INT_MAX;
 | |
| 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
 | |
| 	case FP_NAN:
 | |
| 		*decpt = INT_MAX;
 | |
| 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
 | |
| 	default:
 | |
| 		abort();
 | |
| 	}
 | |
| 
 | |
| 	/* FP_NORMAL or FP_SUBNORMAL */
 | |
| 
 | |
| 	if (ndigits == 0)		/* dtoa() compatibility */
 | |
| 		ndigits = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * For simplicity, we generate all the digits even if the
 | |
| 	 * caller has requested fewer.
 | |
| 	 */
 | |
| 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
 | |
| 	s0 = rv_alloc(bufsize);
 | |
| 	if (s0 == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We work from right to left, first adding any requested zero
 | |
| 	 * padding, then the least significant portion of the
 | |
| 	 * mantissa, followed by the most significant.  The buffer is
 | |
| 	 * filled with the byte values 0x0 through 0xf, which are
 | |
| 	 * converted to xdigs[0x0] through xdigs[0xf] after the
 | |
| 	 * rounding phase.
 | |
| 	 */
 | |
| 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
 | |
| 		*s = 0;
 | |
| 	for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
 | |
| 		*s = u.extu_ext.ext_fracl & 0xf;
 | |
| 		u.extu_ext.ext_fracl >>= 4;
 | |
| 	}
 | |
| #ifdef EXT_FRACHMBITS
 | |
| 	for (; s > s0; s--) {
 | |
| 		*s = u.extu_ext.ext_frachm & 0xf;
 | |
| 		u.extu_ext.ext_frachm >>= 4;
 | |
| 	}
 | |
| #endif
 | |
| #ifdef EXT_FRACLMBITS
 | |
| 	for (; s > s0; s--) {
 | |
| 		*s = u.extu_ext.ext_fraclm & 0xf;
 | |
| 		u.extu_ext.ext_fraclm >>= 4;
 | |
| 	}
 | |
| #endif
 | |
| 	for (; s > s0; s--) {
 | |
| 		*s = u.extu_ext.ext_frach & 0xf;
 | |
| 		u.extu_ext.ext_frach >>= 4;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, we have snarfed all the bits in the
 | |
| 	 * mantissa, with the possible exception of the highest-order
 | |
| 	 * (partial) nibble, which is dealt with by the next
 | |
| 	 * statement.  We also tack on the implicit normalization bit.
 | |
| 	 */
 | |
| 	*s = u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
 | |
| 
 | |
| 	/* If ndigits < 0, we are expected to auto-size the precision. */
 | |
| 	if (ndigits < 0) {
 | |
| 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
 | |
| 			continue;
 | |
| 	}
 | |
| 
 | |
| 	if (sigfigs > ndigits && s0[ndigits] != 0)
 | |
| 		dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
 | |
| 
 | |
| 	s = s0 + ndigits;
 | |
| 	if (rve != NULL)
 | |
| 		*rve = s;
 | |
| 	*s-- = '\0';
 | |
| 	for (; s >= s0; s--)
 | |
| 		*s = xdigs[(unsigned int)*s];
 | |
| 
 | |
| 	return (s0);
 | |
| }
 | |
| 
 | |
| #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
 | |
| 
 | |
| char *
 | |
| hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
 | |
|     char **rve)
 | |
| {
 | |
| 
 | |
| 	return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
 | |
| }
 | |
| 
 | |
| #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
 |