 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			285 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: qdivrem.c,v 1.4 2012/03/20 16:21:41 matt Exp $	*/
 | |
| 
 | |
| /*-
 | |
|  * Copyright (c) 1992, 1993
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * This software was developed by the Computer Systems Engineering group
 | |
|  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
 | |
|  * contributed to Berkeley.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| #if defined(LIBC_SCCS) && !defined(lint)
 | |
| #if 0
 | |
| static char sccsid[] = "@(#)qdivrem.c	8.1 (Berkeley) 6/4/93";
 | |
| #else
 | |
| __RCSID("$NetBSD: qdivrem.c,v 1.4 2012/03/20 16:21:41 matt Exp $");
 | |
| #endif
 | |
| #endif /* LIBC_SCCS and not lint */
 | |
| 
 | |
| /*
 | |
|  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
 | |
|  * section 4.3.1, pp. 257--259.
 | |
|  */
 | |
| 
 | |
| #include "quad.h"
 | |
| 
 | |
| #define	B	((int)1 << (unsigned int)HALF_BITS)	/* digit base */
 | |
| 
 | |
| /* Combine two `digits' to make a single two-digit number. */
 | |
| #define	COMBINE(a, b) (((u_int)(a) << (unsigned int)HALF_BITS) | (b))
 | |
| 
 | |
| /* select a type for digits in base B: use unsigned short if they fit */
 | |
| #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
 | |
| typedef unsigned short digit;
 | |
| #else
 | |
| typedef u_int digit;
 | |
| #endif
 | |
| 
 | |
| static void shl(digit *p, int len, int sh);
 | |
| 
 | |
| /*
 | |
|  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
 | |
|  *
 | |
|  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
 | |
|  * fit within u_int.  As a consequence, the maximum length dividend and
 | |
|  * divisor are 4 `digits' in this base (they are shorter if they have
 | |
|  * leading zeros).
 | |
|  */
 | |
| u_quad_t
 | |
| __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
 | |
| {
 | |
| 	union uu tmp;
 | |
| 	digit *u, *v, *q;
 | |
| 	digit v1, v2;
 | |
| 	u_int qhat, rhat, t;
 | |
| 	int m, n, d, j, i;
 | |
| 	digit uspace[5], vspace[5], qspace[5];
 | |
| 
 | |
| 	/*
 | |
| 	 * Take care of special cases: divide by zero, and u < v.
 | |
| 	 */
 | |
| 	if (vq == 0) {
 | |
| 		/* divide by zero. */
 | |
| 		static volatile const unsigned int zero = 0;
 | |
| 
 | |
| 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
 | |
| 		if (arq)
 | |
| 			*arq = uq;
 | |
| 		return (tmp.q);
 | |
| 	}
 | |
| 	if (uq < vq) {
 | |
| 		if (arq)
 | |
| 			*arq = uq;
 | |
| 		return (0);
 | |
| 	}
 | |
| 	u = &uspace[0];
 | |
| 	v = &vspace[0];
 | |
| 	q = &qspace[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * Break dividend and divisor into digits in base B, then
 | |
| 	 * count leading zeros to determine m and n.  When done, we
 | |
| 	 * will have:
 | |
| 	 *	u = (u[1]u[2]...u[m+n]) sub B
 | |
| 	 *	v = (v[1]v[2]...v[n]) sub B
 | |
| 	 *	v[1] != 0
 | |
| 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
 | |
| 	 *	m >= 0 (otherwise u < v, which we already checked)
 | |
| 	 *	m + n = 4
 | |
| 	 * and thus
 | |
| 	 *	m = 4 - n <= 2
 | |
| 	 */
 | |
| 	tmp.uq = uq;
 | |
| 	u[0] = 0;
 | |
| 	u[1] = (digit)HHALF(tmp.ul[H]);
 | |
| 	u[2] = (digit)LHALF(tmp.ul[H]);
 | |
| 	u[3] = (digit)HHALF(tmp.ul[L]);
 | |
| 	u[4] = (digit)LHALF(tmp.ul[L]);
 | |
| 	tmp.uq = vq;
 | |
| 	v[1] = (digit)HHALF(tmp.ul[H]);
 | |
| 	v[2] = (digit)LHALF(tmp.ul[H]);
 | |
| 	v[3] = (digit)HHALF(tmp.ul[L]);
 | |
| 	v[4] = (digit)LHALF(tmp.ul[L]);
 | |
| 	for (n = 4; v[1] == 0; v++) {
 | |
| 		if (--n == 1) {
 | |
| 			u_int rbj;	/* r*B+u[j] (not root boy jim) */
 | |
| 			digit q1, q2, q3, q4;
 | |
| 
 | |
| 			/*
 | |
| 			 * Change of plan, per exercise 16.
 | |
| 			 *	r = 0;
 | |
| 			 *	for j = 1..4:
 | |
| 			 *		q[j] = floor((r*B + u[j]) / v),
 | |
| 			 *		r = (r*B + u[j]) % v;
 | |
| 			 * We unroll this completely here.
 | |
| 			 */
 | |
| 			t = v[2];	/* nonzero, by definition */
 | |
| 			q1 = (digit)(u[1] / t);
 | |
| 			rbj = COMBINE(u[1] % t, u[2]);
 | |
| 			q2 = (digit)(rbj / t);
 | |
| 			rbj = COMBINE(rbj % t, u[3]);
 | |
| 			q3 = (digit)(rbj / t);
 | |
| 			rbj = COMBINE(rbj % t, u[4]);
 | |
| 			q4 = (digit)(rbj / t);
 | |
| 			if (arq)
 | |
| 				*arq = rbj % t;
 | |
| 			tmp.ul[H] = COMBINE(q1, q2);
 | |
| 			tmp.ul[L] = COMBINE(q3, q4);
 | |
| 			return (tmp.q);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * By adjusting q once we determine m, we can guarantee that
 | |
| 	 * there is a complete four-digit quotient at &qspace[1] when
 | |
| 	 * we finally stop.
 | |
| 	 */
 | |
| 	for (m = 4 - n; u[1] == 0; u++)
 | |
| 		m--;
 | |
| 	for (i = 4 - m; --i >= 0;)
 | |
| 		q[i] = 0;
 | |
| 	q += 4 - m;
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we run Program D, translated from MIX to C and acquiring
 | |
| 	 * a few minor changes.
 | |
| 	 *
 | |
| 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
 | |
| 	 */
 | |
| 	d = 0;
 | |
| 	for (t = v[1]; t < B / 2; t <<= (unsigned int)1)
 | |
| 		d++;
 | |
| 	if (d > 0) {
 | |
| 		shl(&u[0], m + n, d);		/* u <<= d */
 | |
| 		shl(&v[1], n - 1, d);		/* v <<= d */
 | |
| 	}
 | |
| 	/*
 | |
| 	 * D2: j = 0.
 | |
| 	 */
 | |
| 	j = 0;
 | |
| 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
 | |
| 	v2 = v[2];	/* for D3 */
 | |
| 	do {
 | |
| 		digit uj0, uj1, uj2;
 | |
| 		
 | |
| 		/*
 | |
| 		 * D3: Calculate qhat (\^q, in TeX notation).
 | |
| 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
 | |
| 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
 | |
| 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
 | |
| 		 * decrement qhat and increase rhat correspondingly.
 | |
| 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
 | |
| 		 */
 | |
| 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
 | |
| 		uj1 = u[j + 1];	/* for D3 only */
 | |
| 		uj2 = u[j + 2];	/* for D3 only */
 | |
| 		if (uj0 == v1) {
 | |
| 			qhat = B;
 | |
| 			rhat = uj1;
 | |
| 			goto qhat_too_big;
 | |
| 		} else {
 | |
| 			u_int nn = COMBINE(uj0, uj1);
 | |
| 			qhat = nn / v1;
 | |
| 			rhat = nn % v1;
 | |
| 		}
 | |
| 		while (v2 * qhat > COMBINE(rhat, uj2)) {
 | |
| 	qhat_too_big:
 | |
| 			qhat--;
 | |
| 			if ((rhat += v1) >= B)
 | |
| 				break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * D4: Multiply and subtract.
 | |
| 		 * The variable `t' holds any borrows across the loop.
 | |
| 		 * We split this up so that we do not require v[0] = 0,
 | |
| 		 * and to eliminate a final special case.
 | |
| 		 */
 | |
| 		for (t = 0, i = n; i > 0; i--) {
 | |
| 			t = u[i + j] - v[i] * qhat - t;
 | |
| 			u[i + j] = (digit)LHALF(t);
 | |
| 			t = (B - HHALF(t)) & (B - 1);
 | |
| 		}
 | |
| 		t = u[j] - t;
 | |
| 		u[j] = (digit)LHALF(t);
 | |
| 		/*
 | |
| 		 * D5: test remainder.
 | |
| 		 * There is a borrow if and only if HHALF(t) is nonzero;
 | |
| 		 * in that (rare) case, qhat was too large (by exactly 1).
 | |
| 		 * Fix it by adding v[1..n] to u[j..j+n].
 | |
| 		 */
 | |
| 		if (HHALF(t)) {
 | |
| 			qhat--;
 | |
| 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
 | |
| 				t += u[i + j] + v[i];
 | |
| 				u[i + j] = (digit)LHALF(t);
 | |
| 				t = HHALF(t);
 | |
| 			}
 | |
| 			u[j] = (digit)LHALF(u[j] + t);
 | |
| 		}
 | |
| 		q[j] = (digit)qhat;
 | |
| 	} while (++j <= m);		/* D7: loop on j. */
 | |
| 
 | |
| 	/*
 | |
| 	 * If caller wants the remainder, we have to calculate it as
 | |
| 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
 | |
| 	 * u[m+1..m+n], but we may need more source digits).
 | |
| 	 */
 | |
| 	if (arq) {
 | |
| 		if (d) {
 | |
| 			for (i = m + n; i > m; --i)
 | |
| 				u[i] = (digit)(((u_int)u[i] >> d) |
 | |
| 				    LHALF((u_int)u[i - 1] << (unsigned int)(HALF_BITS - d)));
 | |
| 			u[i] = 0;
 | |
| 		}
 | |
| 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
 | |
| 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
 | |
| 		*arq = tmp.q;
 | |
| 	}
 | |
| 
 | |
| 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
 | |
| 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
 | |
| 	return (tmp.q);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
 | |
|  * `fall out' the left (there never will be any such anyway).
 | |
|  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
 | |
|  */
 | |
| static void
 | |
| shl(digit *p, int len, int sh)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		p[i] = (digit)(LHALF((u_int)p[i] << sh) |
 | |
| 		    ((u_int)p[i + 1] >> (HALF_BITS - sh)));
 | |
| 	p[i] = (digit)(LHALF((u_int)p[i] << sh));
 | |
| }
 |