 f14fb60209
			
		
	
	
		f14fb60209
		
	
	
	
	
		
			
			* Updating common/lib * Updating lib/csu * Updating lib/libc * Updating libexec/ld.elf_so * Corrected test on __minix in featuretest to actually follow the meaning of the comment. * Cleaned up _REENTRANT-related defintions. * Disabled -D_REENTRANT for libfetch * Removing some unneeded __NBSD_LIBC defines and tests Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
		
			
				
	
	
		
			3949 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3949 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*	$NetBSD: jemalloc.c,v 1.28 2012/03/21 14:32:22 christos Exp $	*/
 | |
| 
 | |
| /*-
 | |
|  * Copyright (C) 2006,2007 Jason Evans <jasone@FreeBSD.org>.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice(s), this list of conditions and the following disclaimer as
 | |
|  *    the first lines of this file unmodified other than the possible
 | |
|  *    addition of one or more copyright notices.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice(s), this list of conditions and the following disclaimer in
 | |
|  *    the documentation and/or other materials provided with the
 | |
|  *    distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
 | |
|  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
 | |
|  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 | |
|  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 | |
|  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 | |
|  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 | |
|  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  *******************************************************************************
 | |
|  *
 | |
|  * This allocator implementation is designed to provide scalable performance
 | |
|  * for multi-threaded programs on multi-processor systems.  The following
 | |
|  * features are included for this purpose:
 | |
|  *
 | |
|  *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
 | |
|  *     contention and cache sloshing.
 | |
|  *
 | |
|  *   + Cache line sharing between arenas is avoided for internal data
 | |
|  *     structures.
 | |
|  *
 | |
|  *   + Memory is managed in chunks and runs (chunks can be split into runs),
 | |
|  *     rather than as individual pages.  This provides a constant-time
 | |
|  *     mechanism for associating allocations with particular arenas.
 | |
|  *
 | |
|  * Allocation requests are rounded up to the nearest size class, and no record
 | |
|  * of the original request size is maintained.  Allocations are broken into
 | |
|  * categories according to size class.  Assuming runtime defaults, 4 kB pages
 | |
|  * and a 16 byte quantum, the size classes in each category are as follows:
 | |
|  *
 | |
|  *   |=====================================|
 | |
|  *   | Category | Subcategory    |    Size |
 | |
|  *   |=====================================|
 | |
|  *   | Small    | Tiny           |       2 |
 | |
|  *   |          |                |       4 |
 | |
|  *   |          |                |       8 |
 | |
|  *   |          |----------------+---------|
 | |
|  *   |          | Quantum-spaced |      16 |
 | |
|  *   |          |                |      32 |
 | |
|  *   |          |                |      48 |
 | |
|  *   |          |                |     ... |
 | |
|  *   |          |                |     480 |
 | |
|  *   |          |                |     496 |
 | |
|  *   |          |                |     512 |
 | |
|  *   |          |----------------+---------|
 | |
|  *   |          | Sub-page       |    1 kB |
 | |
|  *   |          |                |    2 kB |
 | |
|  *   |=====================================|
 | |
|  *   | Large                     |    4 kB |
 | |
|  *   |                           |    8 kB |
 | |
|  *   |                           |   12 kB |
 | |
|  *   |                           |     ... |
 | |
|  *   |                           | 1012 kB |
 | |
|  *   |                           | 1016 kB |
 | |
|  *   |                           | 1020 kB |
 | |
|  *   |=====================================|
 | |
|  *   | Huge                      |    1 MB |
 | |
|  *   |                           |    2 MB |
 | |
|  *   |                           |    3 MB |
 | |
|  *   |                           |     ... |
 | |
|  *   |=====================================|
 | |
|  *
 | |
|  * A different mechanism is used for each category:
 | |
|  *
 | |
|  *   Small : Each size class is segregated into its own set of runs.  Each run
 | |
|  *           maintains a bitmap of which regions are free/allocated.
 | |
|  *
 | |
|  *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
 | |
|  *           in the associated arena chunk header maps.
 | |
|  *
 | |
|  *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
 | |
|  *          Metadata are stored in a separate red-black tree.
 | |
|  *
 | |
|  *******************************************************************************
 | |
|  */
 | |
| 
 | |
| /* LINTLIBRARY */
 | |
| 
 | |
| #ifdef __NetBSD__
 | |
| #  define xutrace(a, b)		utrace("malloc", (a), (b))
 | |
| #  define __DECONST(x, y)	((x)__UNCONST(y))
 | |
| #  define NO_TLS
 | |
| #else
 | |
| #  define xutrace(a, b)		utrace((a), (b))
 | |
| #endif	/* __NetBSD__ */
 | |
| 
 | |
| /*
 | |
|  * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
 | |
|  * defaults the A and J runtime options to off.  These settings are appropriate
 | |
|  * for production systems.
 | |
|  */
 | |
| #define MALLOC_PRODUCTION
 | |
| 
 | |
| #ifndef MALLOC_PRODUCTION
 | |
| #  define MALLOC_DEBUG
 | |
| #endif
 | |
| 
 | |
| #include <sys/cdefs.h>
 | |
| /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */ 
 | |
| __RCSID("$NetBSD: jemalloc.c,v 1.28 2012/03/21 14:32:22 christos Exp $");
 | |
| 
 | |
| #ifdef __FreeBSD__
 | |
| #include "libc_private.h"
 | |
| #ifdef MALLOC_DEBUG
 | |
| #  define _LOCK_DEBUG
 | |
| #endif
 | |
| #include "spinlock.h"
 | |
| #endif
 | |
| #include "namespace.h"
 | |
| #include <sys/mman.h>
 | |
| #include <sys/param.h>
 | |
| #ifdef __FreeBSD__
 | |
| #include <sys/stddef.h>
 | |
| #endif
 | |
| #include <sys/time.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/sysctl.h>
 | |
| #include <sys/tree.h>
 | |
| #include <sys/uio.h>
 | |
| #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
 | |
| 
 | |
| #ifdef __FreeBSD__
 | |
| #include <machine/atomic.h>
 | |
| #include <machine/cpufunc.h>
 | |
| #endif
 | |
| #include <machine/vmparam.h>
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <limits.h>
 | |
| #include <pthread.h>
 | |
| #include <sched.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdbool.h>
 | |
| #include <stdio.h>
 | |
| #include <stdint.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <strings.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| #ifdef __NetBSD__
 | |
| #  include <reentrant.h>
 | |
| #  include "extern.h"
 | |
| 
 | |
| #define STRERROR_R(a, b, c)	__strerror_r(a, b, c);
 | |
| /*
 | |
|  * A non localized version of strerror, that avoids bringing in
 | |
|  * stdio and the locale code. All the malloc messages are in English
 | |
|  * so why bother?
 | |
|  */
 | |
| static int
 | |
| __strerror_r(int e, char *s, size_t l)
 | |
| {
 | |
| 	int rval;
 | |
| 	size_t slen;
 | |
| 
 | |
| 	if (e >= 0 && e < sys_nerr) {
 | |
| 		slen = strlcpy(s, sys_errlist[e], l);
 | |
| 		rval = 0;
 | |
| 	} else {
 | |
| 		slen = snprintf_ss(s, l, "Unknown error %u", e);
 | |
| 		rval = EINVAL;
 | |
| 	}
 | |
| 	return slen >= l ? ERANGE : rval;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef __FreeBSD__
 | |
| #define STRERROR_R(a, b, c)	strerror_r(a, b, c);
 | |
| #include "un-namespace.h"
 | |
| #endif
 | |
| 
 | |
| /* MALLOC_STATS enables statistics calculation. */
 | |
| #ifndef MALLOC_PRODUCTION
 | |
| #  define MALLOC_STATS
 | |
| #endif
 | |
| 
 | |
| #ifdef MALLOC_DEBUG
 | |
| #  ifdef NDEBUG
 | |
| #    undef NDEBUG
 | |
| #  endif
 | |
| #else
 | |
| #  ifndef NDEBUG
 | |
| #    define NDEBUG
 | |
| #  endif
 | |
| #endif
 | |
| #include <assert.h>
 | |
| 
 | |
| #ifdef MALLOC_DEBUG
 | |
|    /* Disable inlining to make debugging easier. */
 | |
| #  define inline
 | |
| #endif
 | |
| 
 | |
| /* Size of stack-allocated buffer passed to strerror_r(). */
 | |
| #define	STRERROR_BUF		64
 | |
| 
 | |
| /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
 | |
| #ifdef __i386__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	2
 | |
| #  define USE_BRK
 | |
| #endif
 | |
| #ifdef __ia64__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	3
 | |
| #endif
 | |
| #ifdef __alpha__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	3
 | |
| #  define NO_TLS
 | |
| #endif
 | |
| #ifdef __sparc64__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	3
 | |
| #  define NO_TLS
 | |
| #endif
 | |
| #ifdef __amd64__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	3
 | |
| #endif
 | |
| #ifdef __arm__
 | |
| #  define QUANTUM_2POW_MIN	3
 | |
| #  define SIZEOF_PTR_2POW	2
 | |
| #  define USE_BRK
 | |
| #  define NO_TLS
 | |
| #endif
 | |
| #ifdef __powerpc__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	2
 | |
| #  define USE_BRK
 | |
| #endif
 | |
| #if defined(__sparc__) && !defined(__sparc64__)
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	2
 | |
| #  define USE_BRK
 | |
| #endif
 | |
| #ifdef __vax__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	2
 | |
| #  define USE_BRK
 | |
| #endif
 | |
| #ifdef __sh__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	2
 | |
| #  define USE_BRK
 | |
| #endif
 | |
| #ifdef __m68k__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	2
 | |
| #  define USE_BRK
 | |
| #endif
 | |
| #ifdef __mips__
 | |
| #  define QUANTUM_2POW_MIN	4
 | |
| #  define SIZEOF_PTR_2POW	2
 | |
| #  define USE_BRK
 | |
| #endif
 | |
| #ifdef __hppa__                                                                                                                                         
 | |
| #  define QUANTUM_2POW_MIN     4                                                                                                                        
 | |
| #  define SIZEOF_PTR_2POW      2                                                                                                                        
 | |
| #  define USE_BRK                                                                                                                                       
 | |
| #endif           
 | |
| 
 | |
| #define	SIZEOF_PTR		(1 << SIZEOF_PTR_2POW)
 | |
| 
 | |
| /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
 | |
| #ifndef SIZEOF_INT_2POW
 | |
| #  define SIZEOF_INT_2POW	2
 | |
| #endif
 | |
| 
 | |
| /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
 | |
| #if (!defined(PIC) && !defined(NO_TLS))
 | |
| #  define NO_TLS
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Size and alignment of memory chunks that are allocated by the OS's virtual
 | |
|  * memory system.
 | |
|  */
 | |
| #define	CHUNK_2POW_DEFAULT	20
 | |
| 
 | |
| /*
 | |
|  * Maximum size of L1 cache line.  This is used to avoid cache line aliasing,
 | |
|  * so over-estimates are okay (up to a point), but under-estimates will
 | |
|  * negatively affect performance.
 | |
|  */
 | |
| #define	CACHELINE_2POW		6
 | |
| #define	CACHELINE		((size_t)(1 << CACHELINE_2POW))
 | |
| 
 | |
| /* Smallest size class to support. */
 | |
| #define	TINY_MIN_2POW		1
 | |
| 
 | |
| /*
 | |
|  * Maximum size class that is a multiple of the quantum, but not (necessarily)
 | |
|  * a power of 2.  Above this size, allocations are rounded up to the nearest
 | |
|  * power of 2.
 | |
|  */
 | |
| #define	SMALL_MAX_2POW_DEFAULT	9
 | |
| #define	SMALL_MAX_DEFAULT	(1 << SMALL_MAX_2POW_DEFAULT)
 | |
| 
 | |
| /*
 | |
|  * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
 | |
|  * as small as possible such that this setting is still honored, without
 | |
|  * violating other constraints.  The goal is to make runs as small as possible
 | |
|  * without exceeding a per run external fragmentation threshold.
 | |
|  *
 | |
|  * We use binary fixed point math for overhead computations, where the binary
 | |
|  * point is implicitly RUN_BFP bits to the left.
 | |
|  *
 | |
|  * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
 | |
|  * honored for some/all object sizes, since there is one bit of header overhead
 | |
|  * per object (plus a constant).  This constraint is relaxed (ignored) for runs
 | |
|  * that are so small that the per-region overhead is greater than:
 | |
|  *
 | |
|  *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
 | |
|  */
 | |
| #define RUN_BFP			12
 | |
| /*                              \/   Implicit binary fixed point. */
 | |
| #define RUN_MAX_OVRHD		0x0000003dU
 | |
| #define RUN_MAX_OVRHD_RELAX	0x00001800U
 | |
| 
 | |
| /* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
 | |
| #define RUN_MAX_SMALL_2POW	15
 | |
| #define RUN_MAX_SMALL		(1 << RUN_MAX_SMALL_2POW)
 | |
| 
 | |
| /******************************************************************************/
 | |
| 
 | |
| #ifdef __FreeBSD__
 | |
| /*
 | |
|  * Mutexes based on spinlocks.  We can't use normal pthread mutexes, because
 | |
|  * they require malloc()ed memory.
 | |
|  */
 | |
| typedef struct {
 | |
| 	spinlock_t	lock;
 | |
| } malloc_mutex_t;
 | |
| 
 | |
| /* Set to true once the allocator has been initialized. */
 | |
| static bool malloc_initialized = false;
 | |
| 
 | |
| /* Used to avoid initialization races. */
 | |
| static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
 | |
| #else
 | |
| #define	malloc_mutex_t	mutex_t
 | |
| 
 | |
| /* Set to true once the allocator has been initialized. */
 | |
| static bool malloc_initialized = false;
 | |
| 
 | |
| /* Used to avoid initialization races. */
 | |
| static mutex_t init_lock = MUTEX_INITIALIZER;
 | |
| #endif
 | |
| 
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Statistics data structures.
 | |
|  */
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 
 | |
| typedef struct malloc_bin_stats_s malloc_bin_stats_t;
 | |
| struct malloc_bin_stats_s {
 | |
| 	/*
 | |
| 	 * Number of allocation requests that corresponded to the size of this
 | |
| 	 * bin.
 | |
| 	 */
 | |
| 	uint64_t	nrequests;
 | |
| 
 | |
| 	/* Total number of runs created for this bin's size class. */
 | |
| 	uint64_t	nruns;
 | |
| 
 | |
| 	/*
 | |
| 	 * Total number of runs reused by extracting them from the runs tree for
 | |
| 	 * this bin's size class.
 | |
| 	 */
 | |
| 	uint64_t	reruns;
 | |
| 
 | |
| 	/* High-water mark for this bin. */
 | |
| 	unsigned long	highruns;
 | |
| 
 | |
| 	/* Current number of runs in this bin. */
 | |
| 	unsigned long	curruns;
 | |
| };
 | |
| 
 | |
| typedef struct arena_stats_s arena_stats_t;
 | |
| struct arena_stats_s {
 | |
| 	/* Number of bytes currently mapped. */
 | |
| 	size_t		mapped;
 | |
| 
 | |
| 	/* Per-size-category statistics. */
 | |
| 	size_t		allocated_small;
 | |
| 	uint64_t	nmalloc_small;
 | |
| 	uint64_t	ndalloc_small;
 | |
| 
 | |
| 	size_t		allocated_large;
 | |
| 	uint64_t	nmalloc_large;
 | |
| 	uint64_t	ndalloc_large;
 | |
| };
 | |
| 
 | |
| typedef struct chunk_stats_s chunk_stats_t;
 | |
| struct chunk_stats_s {
 | |
| 	/* Number of chunks that were allocated. */
 | |
| 	uint64_t	nchunks;
 | |
| 
 | |
| 	/* High-water mark for number of chunks allocated. */
 | |
| 	unsigned long	highchunks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Current number of chunks allocated.  This value isn't maintained for
 | |
| 	 * any other purpose, so keep track of it in order to be able to set
 | |
| 	 * highchunks.
 | |
| 	 */
 | |
| 	unsigned long	curchunks;
 | |
| };
 | |
| 
 | |
| #endif /* #ifdef MALLOC_STATS */
 | |
| 
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Chunk data structures.
 | |
|  */
 | |
| 
 | |
| /* Tree of chunks. */
 | |
| typedef struct chunk_node_s chunk_node_t;
 | |
| struct chunk_node_s {
 | |
| 	/* Linkage for the chunk tree. */
 | |
| 	RB_ENTRY(chunk_node_s) link;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pointer to the chunk that this tree node is responsible for.  In some
 | |
| 	 * (but certainly not all) cases, this data structure is placed at the
 | |
| 	 * beginning of the corresponding chunk, so this field may point to this
 | |
| 	 * node.
 | |
| 	 */
 | |
| 	void	*chunk;
 | |
| 
 | |
| 	/* Total chunk size. */
 | |
| 	size_t	size;
 | |
| };
 | |
| typedef struct chunk_tree_s chunk_tree_t;
 | |
| RB_HEAD(chunk_tree_s, chunk_node_s);
 | |
| 
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Arena data structures.
 | |
|  */
 | |
| 
 | |
| typedef struct arena_s arena_t;
 | |
| typedef struct arena_bin_s arena_bin_t;
 | |
| 
 | |
| typedef struct arena_chunk_map_s arena_chunk_map_t;
 | |
| struct arena_chunk_map_s {
 | |
| 	/* Number of pages in run. */
 | |
| 	uint32_t	npages;
 | |
| 	/*
 | |
| 	 * Position within run.  For a free run, this is POS_FREE for the first
 | |
| 	 * and last pages.  The POS_FREE special value makes it possible to
 | |
| 	 * quickly coalesce free runs.
 | |
| 	 *
 | |
| 	 * This is the limiting factor for chunksize; there can be at most 2^31
 | |
| 	 * pages in a run.
 | |
| 	 */
 | |
| #define POS_FREE ((uint32_t)0xffffffffU)
 | |
| 	uint32_t	pos;
 | |
| };
 | |
| 
 | |
| /* Arena chunk header. */
 | |
| typedef struct arena_chunk_s arena_chunk_t;
 | |
| struct arena_chunk_s {
 | |
| 	/* Arena that owns the chunk. */
 | |
| 	arena_t *arena;
 | |
| 
 | |
| 	/* Linkage for the arena's chunk tree. */
 | |
| 	RB_ENTRY(arena_chunk_s) link;
 | |
| 
 | |
| 	/*
 | |
| 	 * Number of pages in use.  This is maintained in order to make
 | |
| 	 * detection of empty chunks fast.
 | |
| 	 */
 | |
| 	uint32_t pages_used;
 | |
| 
 | |
| 	/*
 | |
| 	 * Every time a free run larger than this value is created/coalesced,
 | |
| 	 * this value is increased.  The only way that the value decreases is if
 | |
| 	 * arena_run_alloc() fails to find a free run as large as advertised by
 | |
| 	 * this value.
 | |
| 	 */
 | |
| 	uint32_t max_frun_npages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Every time a free run that starts at an earlier page than this value
 | |
| 	 * is created/coalesced, this value is decreased.  It is reset in a
 | |
| 	 * similar fashion to max_frun_npages.
 | |
| 	 */
 | |
| 	uint32_t min_frun_ind;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map of pages within chunk that keeps track of free/large/small.  For
 | |
| 	 * free runs, only the map entries for the first and last pages are
 | |
| 	 * kept up to date, so that free runs can be quickly coalesced.
 | |
| 	 */
 | |
| 	arena_chunk_map_t map[1]; /* Dynamically sized. */
 | |
| };
 | |
| typedef struct arena_chunk_tree_s arena_chunk_tree_t;
 | |
| RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
 | |
| 
 | |
| typedef struct arena_run_s arena_run_t;
 | |
| struct arena_run_s {
 | |
| 	/* Linkage for run trees. */
 | |
| 	RB_ENTRY(arena_run_s) link;
 | |
| 
 | |
| #ifdef MALLOC_DEBUG
 | |
| 	uint32_t	magic;
 | |
| #  define ARENA_RUN_MAGIC 0x384adf93
 | |
| #endif
 | |
| 
 | |
| 	/* Bin this run is associated with. */
 | |
| 	arena_bin_t	*bin;
 | |
| 
 | |
| 	/* Index of first element that might have a free region. */
 | |
| 	unsigned	regs_minelm;
 | |
| 
 | |
| 	/* Number of free regions in run. */
 | |
| 	unsigned	nfree;
 | |
| 
 | |
| 	/* Bitmask of in-use regions (0: in use, 1: free). */
 | |
| 	unsigned	regs_mask[1]; /* Dynamically sized. */
 | |
| };
 | |
| typedef struct arena_run_tree_s arena_run_tree_t;
 | |
| RB_HEAD(arena_run_tree_s, arena_run_s);
 | |
| 
 | |
| struct arena_bin_s {
 | |
| 	/*
 | |
| 	 * Current run being used to service allocations of this bin's size
 | |
| 	 * class.
 | |
| 	 */
 | |
| 	arena_run_t	*runcur;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tree of non-full runs.  This tree is used when looking for an
 | |
| 	 * existing run when runcur is no longer usable.  We choose the
 | |
| 	 * non-full run that is lowest in memory; this policy tends to keep
 | |
| 	 * objects packed well, and it can also help reduce the number of
 | |
| 	 * almost-empty chunks.
 | |
| 	 */
 | |
| 	arena_run_tree_t runs;
 | |
| 
 | |
| 	/* Size of regions in a run for this bin's size class. */
 | |
| 	size_t		reg_size;
 | |
| 
 | |
| 	/* Total size of a run for this bin's size class. */
 | |
| 	size_t		run_size;
 | |
| 
 | |
| 	/* Total number of regions in a run for this bin's size class. */
 | |
| 	uint32_t	nregs;
 | |
| 
 | |
| 	/* Number of elements in a run's regs_mask for this bin's size class. */
 | |
| 	uint32_t	regs_mask_nelms;
 | |
| 
 | |
| 	/* Offset of first region in a run for this bin's size class. */
 | |
| 	uint32_t	reg0_offset;
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 	/* Bin statistics. */
 | |
| 	malloc_bin_stats_t stats;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| struct arena_s {
 | |
| #ifdef MALLOC_DEBUG
 | |
| 	uint32_t		magic;
 | |
| #  define ARENA_MAGIC 0x947d3d24
 | |
| #endif
 | |
| 
 | |
| 	/* All operations on this arena require that mtx be locked. */
 | |
| 	malloc_mutex_t		mtx;
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 	arena_stats_t		stats;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Tree of chunks this arena manages.
 | |
| 	 */
 | |
| 	arena_chunk_tree_t	chunks;
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to avoid rapid chunk allocation/deallocation when an arena
 | |
| 	 * oscillates right on the cusp of needing a new chunk, cache the most
 | |
| 	 * recently freed chunk.  This caching is disabled by opt_hint.
 | |
| 	 *
 | |
| 	 * There is one spare chunk per arena, rather than one spare total, in
 | |
| 	 * order to avoid interactions between multiple threads that could make
 | |
| 	 * a single spare inadequate.
 | |
| 	 */
 | |
| 	arena_chunk_t *spare;
 | |
| 
 | |
| 	/*
 | |
| 	 * bins is used to store rings of free regions of the following sizes,
 | |
| 	 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
 | |
| 	 *
 | |
| 	 *   bins[i] | size |
 | |
| 	 *   --------+------+
 | |
| 	 *        0  |    2 |
 | |
| 	 *        1  |    4 |
 | |
| 	 *        2  |    8 |
 | |
| 	 *   --------+------+
 | |
| 	 *        3  |   16 |
 | |
| 	 *        4  |   32 |
 | |
| 	 *        5  |   48 |
 | |
| 	 *        6  |   64 |
 | |
| 	 *           :      :
 | |
| 	 *           :      :
 | |
| 	 *       33  |  496 |
 | |
| 	 *       34  |  512 |
 | |
| 	 *   --------+------+
 | |
| 	 *       35  | 1024 |
 | |
| 	 *       36  | 2048 |
 | |
| 	 *   --------+------+
 | |
| 	 */
 | |
| 	arena_bin_t		bins[1]; /* Dynamically sized. */
 | |
| };
 | |
| 
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Data.
 | |
|  */
 | |
| 
 | |
| /* Number of CPUs. */
 | |
| static unsigned		ncpus;
 | |
| 
 | |
| /* VM page size. */
 | |
| static size_t		pagesize;
 | |
| static size_t		pagesize_mask;
 | |
| static int		pagesize_2pow;
 | |
| 
 | |
| /* Various bin-related settings. */
 | |
| static size_t		bin_maxclass; /* Max size class for bins. */
 | |
| static unsigned		ntbins; /* Number of (2^n)-spaced tiny bins. */
 | |
| static unsigned		nqbins; /* Number of quantum-spaced bins. */
 | |
| static unsigned		nsbins; /* Number of (2^n)-spaced sub-page bins. */
 | |
| static size_t		small_min;
 | |
| static size_t		small_max;
 | |
| 
 | |
| /* Various quantum-related settings. */
 | |
| static size_t		quantum;
 | |
| static size_t		quantum_mask; /* (quantum - 1). */
 | |
| 
 | |
| /* Various chunk-related settings. */
 | |
| static size_t		chunksize;
 | |
| static size_t		chunksize_mask; /* (chunksize - 1). */
 | |
| static int		chunksize_2pow;
 | |
| static unsigned		chunk_npages;
 | |
| static unsigned		arena_chunk_header_npages;
 | |
| static size_t		arena_maxclass; /* Max size class for arenas. */
 | |
| 
 | |
| /********/
 | |
| /*
 | |
|  * Chunks.
 | |
|  */
 | |
| 
 | |
| /* Protects chunk-related data structures. */
 | |
| static malloc_mutex_t	chunks_mtx;
 | |
| 
 | |
| /* Tree of chunks that are stand-alone huge allocations. */
 | |
| static chunk_tree_t	huge;
 | |
| 
 | |
| #ifdef USE_BRK
 | |
| /*
 | |
|  * Try to use brk for chunk-size allocations, due to address space constraints.
 | |
|  */
 | |
| /*
 | |
|  * Protects sbrk() calls.  This must be separate from chunks_mtx, since
 | |
|  * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
 | |
|  * could cause recursive lock acquisition).
 | |
|  */
 | |
| static malloc_mutex_t	brk_mtx;
 | |
| /* Result of first sbrk(0) call. */
 | |
| static void		*brk_base;
 | |
| /* Current end of brk, or ((void *)-1) if brk is exhausted. */
 | |
| static void		*brk_prev;
 | |
| /* Current upper limit on brk addresses. */
 | |
| static void		*brk_max;
 | |
| #endif
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| /* Huge allocation statistics. */
 | |
| static uint64_t		huge_nmalloc;
 | |
| static uint64_t		huge_ndalloc;
 | |
| static uint64_t		huge_nralloc;
 | |
| static size_t		huge_allocated;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Tree of chunks that were previously allocated.  This is used when allocating
 | |
|  * chunks, in an attempt to re-use address space.
 | |
|  */
 | |
| static chunk_tree_t	old_chunks;
 | |
| 
 | |
| /****************************/
 | |
| /*
 | |
|  * base (internal allocation).
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Current pages that are being used for internal memory allocations.  These
 | |
|  * pages are carved up in cacheline-size quanta, so that there is no chance of
 | |
|  * false cache line sharing.
 | |
|  */
 | |
| static void		*base_pages;
 | |
| static void		*base_next_addr;
 | |
| static void		*base_past_addr; /* Addr immediately past base_pages. */
 | |
| static chunk_node_t	*base_chunk_nodes; /* LIFO cache of chunk nodes. */
 | |
| static malloc_mutex_t	base_mtx;
 | |
| #ifdef MALLOC_STATS
 | |
| static size_t		base_mapped;
 | |
| #endif
 | |
| 
 | |
| /********/
 | |
| /*
 | |
|  * Arenas.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Arenas that are used to service external requests.  Not all elements of the
 | |
|  * arenas array are necessarily used; arenas are created lazily as needed.
 | |
|  */
 | |
| static arena_t		**arenas;
 | |
| static unsigned		narenas;
 | |
| static unsigned		next_arena;
 | |
| static malloc_mutex_t	arenas_mtx; /* Protects arenas initialization. */
 | |
| 
 | |
| #ifndef NO_TLS
 | |
| /*
 | |
|  * Map of pthread_self() --> arenas[???], used for selecting an arena to use
 | |
|  * for allocations.
 | |
|  */
 | |
| static __thread arena_t	*arenas_map;
 | |
| #define	get_arenas_map()	(arenas_map)
 | |
| #define	set_arenas_map(x)	(arenas_map = x)
 | |
| #else
 | |
| static thread_key_t arenas_map_key;
 | |
| #define	get_arenas_map()	thr_getspecific(arenas_map_key)
 | |
| #define	set_arenas_map(x)	thr_setspecific(arenas_map_key, x)
 | |
| #endif
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| /* Chunk statistics. */
 | |
| static chunk_stats_t	stats_chunks;
 | |
| #endif
 | |
| 
 | |
| /*******************************/
 | |
| /*
 | |
|  * Runtime configuration options.
 | |
|  */
 | |
| const char	*_malloc_options;
 | |
| 
 | |
| #ifndef MALLOC_PRODUCTION
 | |
| static bool	opt_abort = true;
 | |
| static bool	opt_junk = true;
 | |
| #else
 | |
| static bool	opt_abort = false;
 | |
| static bool	opt_junk = false;
 | |
| #endif
 | |
| static bool	opt_hint = false;
 | |
| static bool	opt_print_stats = false;
 | |
| static int	opt_quantum_2pow = QUANTUM_2POW_MIN;
 | |
| static int	opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
 | |
| static int	opt_chunk_2pow = CHUNK_2POW_DEFAULT;
 | |
| static bool	opt_utrace = false;
 | |
| static bool	opt_sysv = false;
 | |
| static bool	opt_xmalloc = false;
 | |
| static bool	opt_zero = false;
 | |
| static int32_t	opt_narenas_lshift = 0;
 | |
| 
 | |
| typedef struct {
 | |
| 	void	*p;
 | |
| 	size_t	s;
 | |
| 	void	*r;
 | |
| } malloc_utrace_t;
 | |
| 
 | |
| #define	UTRACE(a, b, c)							\
 | |
| 	if (opt_utrace) {						\
 | |
| 		malloc_utrace_t ut;					\
 | |
| 		ut.p = a;						\
 | |
| 		ut.s = b;						\
 | |
| 		ut.r = c;						\
 | |
| 		xutrace(&ut, sizeof(ut));				\
 | |
| 	}
 | |
| 
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin function prototypes for non-inline static functions.
 | |
|  */
 | |
| 
 | |
| static void	wrtmessage(const char *p1, const char *p2, const char *p3,
 | |
| 		const char *p4);
 | |
| #ifdef MALLOC_STATS
 | |
| static void	malloc_printf(const char *format, ...);
 | |
| #endif
 | |
| static char	*size_t2s(size_t x, char *s);
 | |
| static bool	base_pages_alloc(size_t minsize);
 | |
| static void	*base_alloc(size_t size);
 | |
| static chunk_node_t *base_chunk_node_alloc(void);
 | |
| static void	base_chunk_node_dealloc(chunk_node_t *node);
 | |
| #ifdef MALLOC_STATS
 | |
| static void	stats_print(arena_t *arena);
 | |
| #endif
 | |
| static void	*pages_map(void *addr, size_t size);
 | |
| static void	*pages_map_align(void *addr, size_t size, int align);
 | |
| static void	pages_unmap(void *addr, size_t size);
 | |
| static void	*chunk_alloc(size_t size);
 | |
| static void	chunk_dealloc(void *chunk, size_t size);
 | |
| static void	arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
 | |
| static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
 | |
| static void	arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
 | |
| static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
 | |
| static void	arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
 | |
| static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
 | |
| static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
 | |
| static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
 | |
| static void	*arena_malloc(arena_t *arena, size_t size);
 | |
| static void	*arena_palloc(arena_t *arena, size_t alignment, size_t size,
 | |
|     size_t alloc_size);
 | |
| static size_t	arena_salloc(const void *ptr);
 | |
| static void	*arena_ralloc(void *ptr, size_t size, size_t oldsize);
 | |
| static void	arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
 | |
| static bool	arena_new(arena_t *arena);
 | |
| static arena_t	*arenas_extend(unsigned ind);
 | |
| static void	*huge_malloc(size_t size);
 | |
| static void	*huge_palloc(size_t alignment, size_t size);
 | |
| static void	*huge_ralloc(void *ptr, size_t size, size_t oldsize);
 | |
| static void	huge_dalloc(void *ptr);
 | |
| static void	*imalloc(size_t size);
 | |
| static void	*ipalloc(size_t alignment, size_t size);
 | |
| static void	*icalloc(size_t size);
 | |
| static size_t	isalloc(const void *ptr);
 | |
| static void	*iralloc(void *ptr, size_t size);
 | |
| static void	idalloc(void *ptr);
 | |
| static void	malloc_print_stats(void);
 | |
| static bool	malloc_init_hard(void);
 | |
| 
 | |
| /*
 | |
|  * End function prototypes.
 | |
|  */
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin mutex.
 | |
|  */
 | |
| 
 | |
| #ifdef __NetBSD__
 | |
| #define	malloc_mutex_init(m)	mutex_init(m, NULL)
 | |
| #define	malloc_mutex_lock(m)	mutex_lock(m)
 | |
| #define	malloc_mutex_unlock(m)	mutex_unlock(m)
 | |
| #else	/* __NetBSD__ */
 | |
| static inline void
 | |
| malloc_mutex_init(malloc_mutex_t *a_mutex)
 | |
| {
 | |
| 	static const spinlock_t lock = _SPINLOCK_INITIALIZER;
 | |
| 
 | |
| 	a_mutex->lock = lock;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| malloc_mutex_lock(malloc_mutex_t *a_mutex)
 | |
| {
 | |
| 
 | |
| 	if (__isthreaded)
 | |
| 		_SPINLOCK(&a_mutex->lock);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| malloc_mutex_unlock(malloc_mutex_t *a_mutex)
 | |
| {
 | |
| 
 | |
| 	if (__isthreaded)
 | |
| 		_SPINUNLOCK(&a_mutex->lock);
 | |
| }
 | |
| #endif	/* __NetBSD__ */
 | |
| 
 | |
| /*
 | |
|  * End mutex.
 | |
|  */
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin Utility functions/macros.
 | |
|  */
 | |
| 
 | |
| /* Return the chunk address for allocation address a. */
 | |
| #define	CHUNK_ADDR2BASE(a)						\
 | |
| 	((void *)((uintptr_t)(a) & ~chunksize_mask))
 | |
| 
 | |
| /* Return the chunk offset of address a. */
 | |
| #define	CHUNK_ADDR2OFFSET(a)						\
 | |
| 	((size_t)((uintptr_t)(a) & chunksize_mask))
 | |
| 
 | |
| /* Return the smallest chunk multiple that is >= s. */
 | |
| #define	CHUNK_CEILING(s)						\
 | |
| 	(((s) + chunksize_mask) & ~chunksize_mask)
 | |
| 
 | |
| /* Return the smallest cacheline multiple that is >= s. */
 | |
| #define	CACHELINE_CEILING(s)						\
 | |
| 	(((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
 | |
| 
 | |
| /* Return the smallest quantum multiple that is >= a. */
 | |
| #define	QUANTUM_CEILING(a)						\
 | |
| 	(((a) + quantum_mask) & ~quantum_mask)
 | |
| 
 | |
| /* Return the smallest pagesize multiple that is >= s. */
 | |
| #define	PAGE_CEILING(s)							\
 | |
| 	(((s) + pagesize_mask) & ~pagesize_mask)
 | |
| 
 | |
| /* Compute the smallest power of 2 that is >= x. */
 | |
| static inline size_t
 | |
| pow2_ceil(size_t x)
 | |
| {
 | |
| 
 | |
| 	x--;
 | |
| 	x |= x >> 1;
 | |
| 	x |= x >> 2;
 | |
| 	x |= x >> 4;
 | |
| 	x |= x >> 8;
 | |
| 	x |= x >> 16;
 | |
| #if (SIZEOF_PTR == 8)
 | |
| 	x |= x >> 32;
 | |
| #endif
 | |
| 	x++;
 | |
| 	return (x);
 | |
| }
 | |
| 
 | |
| static void
 | |
| wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
 | |
| {
 | |
| 
 | |
| 	write(STDERR_FILENO, p1, strlen(p1));
 | |
| 	write(STDERR_FILENO, p2, strlen(p2));
 | |
| 	write(STDERR_FILENO, p3, strlen(p3));
 | |
| 	write(STDERR_FILENO, p4, strlen(p4));
 | |
| }
 | |
| 
 | |
| void	(*_malloc_message)(const char *p1, const char *p2, const char *p3,
 | |
| 	    const char *p4) = wrtmessage;
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| /*
 | |
|  * Print to stderr in such a way as to (hopefully) avoid memory allocation.
 | |
|  */
 | |
| static void
 | |
| malloc_printf(const char *format, ...)
 | |
| {
 | |
| 	char buf[4096];
 | |
| 	va_list ap;
 | |
| 
 | |
| 	va_start(ap, format);
 | |
| 	vsnprintf(buf, sizeof(buf), format, ap);
 | |
| 	va_end(ap);
 | |
| 	_malloc_message(buf, "", "", "");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * We don't want to depend on vsnprintf() for production builds, since that can
 | |
|  * cause unnecessary bloat for static binaries.  size_t2s() provides minimal
 | |
|  * integer printing functionality, so that malloc_printf() use can be limited to
 | |
|  * MALLOC_STATS code.
 | |
|  */
 | |
| #define UMAX2S_BUFSIZE	21
 | |
| static char *
 | |
| size_t2s(size_t x, char *s)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	/* Make sure UMAX2S_BUFSIZE is large enough. */
 | |
| 	/* LINTED */
 | |
| 	assert(sizeof(size_t) <= 8);
 | |
| 
 | |
| 	i = UMAX2S_BUFSIZE - 1;
 | |
| 	s[i] = '\0';
 | |
| 	do {
 | |
| 		i--;
 | |
| 		s[i] = "0123456789"[(int)x % 10];
 | |
| 		x /= (uintmax_t)10LL;
 | |
| 	} while (x > 0);
 | |
| 
 | |
| 	return (&s[i]);
 | |
| }
 | |
| 
 | |
| /******************************************************************************/
 | |
| 
 | |
| static bool
 | |
| base_pages_alloc(size_t minsize)
 | |
| {
 | |
| 	size_t csize = 0;
 | |
| 
 | |
| #ifdef USE_BRK
 | |
| 	/*
 | |
| 	 * Do special brk allocation here, since base allocations don't need to
 | |
| 	 * be chunk-aligned.
 | |
| 	 */
 | |
| 	if (brk_prev != (void *)-1) {
 | |
| 		void *brk_cur;
 | |
| 		intptr_t incr;
 | |
| 
 | |
| 		if (minsize != 0)
 | |
| 			csize = CHUNK_CEILING(minsize);
 | |
| 
 | |
| 		malloc_mutex_lock(&brk_mtx);
 | |
| 		do {
 | |
| 			/* Get the current end of brk. */
 | |
| 			brk_cur = sbrk(0);
 | |
| 
 | |
| 			/*
 | |
| 			 * Calculate how much padding is necessary to
 | |
| 			 * chunk-align the end of brk.  Don't worry about
 | |
| 			 * brk_cur not being chunk-aligned though.
 | |
| 			 */
 | |
| 			incr = (intptr_t)chunksize
 | |
| 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
 | |
| 			assert(incr >= 0);
 | |
| 			if ((size_t)incr < minsize)
 | |
| 				incr += csize;
 | |
| 
 | |
| 			brk_prev = sbrk(incr);
 | |
| 			if (brk_prev == brk_cur) {
 | |
| 				/* Success. */
 | |
| 				malloc_mutex_unlock(&brk_mtx);
 | |
| 				base_pages = brk_cur;
 | |
| 				base_next_addr = base_pages;
 | |
| 				base_past_addr = (void *)((uintptr_t)base_pages
 | |
| 				    + incr);
 | |
| #ifdef MALLOC_STATS
 | |
| 				base_mapped += incr;
 | |
| #endif
 | |
| 				return (false);
 | |
| 			}
 | |
| 		} while (brk_prev != (void *)-1);
 | |
| 		malloc_mutex_unlock(&brk_mtx);
 | |
| 	}
 | |
| 	if (minsize == 0) {
 | |
| 		/*
 | |
| 		 * Failure during initialization doesn't matter, so avoid
 | |
| 		 * falling through to the mmap-based page mapping code.
 | |
| 		 */
 | |
| 		return (true);
 | |
| 	}
 | |
| #endif
 | |
| 	assert(minsize != 0);
 | |
| 	csize = PAGE_CEILING(minsize);
 | |
| 	base_pages = pages_map(NULL, csize);
 | |
| 	if (base_pages == NULL)
 | |
| 		return (true);
 | |
| 	base_next_addr = base_pages;
 | |
| 	base_past_addr = (void *)((uintptr_t)base_pages + csize);
 | |
| #ifdef MALLOC_STATS
 | |
| 	base_mapped += csize;
 | |
| #endif
 | |
| 	return (false);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| base_alloc(size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t csize;
 | |
| 
 | |
| 	/* Round size up to nearest multiple of the cacheline size. */
 | |
| 	csize = CACHELINE_CEILING(size);
 | |
| 
 | |
| 	malloc_mutex_lock(&base_mtx);
 | |
| 
 | |
| 	/* Make sure there's enough space for the allocation. */
 | |
| 	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
 | |
| 		if (base_pages_alloc(csize)) {
 | |
| 			ret = NULL;
 | |
| 			goto RETURN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate. */
 | |
| 	ret = base_next_addr;
 | |
| 	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
 | |
| 
 | |
| RETURN:
 | |
| 	malloc_mutex_unlock(&base_mtx);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static chunk_node_t *
 | |
| base_chunk_node_alloc(void)
 | |
| {
 | |
| 	chunk_node_t *ret;
 | |
| 
 | |
| 	malloc_mutex_lock(&base_mtx);
 | |
| 	if (base_chunk_nodes != NULL) {
 | |
| 		ret = base_chunk_nodes;
 | |
| 		/* LINTED */
 | |
| 		base_chunk_nodes = *(chunk_node_t **)ret;
 | |
| 		malloc_mutex_unlock(&base_mtx);
 | |
| 	} else {
 | |
| 		malloc_mutex_unlock(&base_mtx);
 | |
| 		ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
 | |
| 	}
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void
 | |
| base_chunk_node_dealloc(chunk_node_t *node)
 | |
| {
 | |
| 
 | |
| 	malloc_mutex_lock(&base_mtx);
 | |
| 	/* LINTED */
 | |
| 	*(chunk_node_t **)node = base_chunk_nodes;
 | |
| 	base_chunk_nodes = node;
 | |
| 	malloc_mutex_unlock(&base_mtx);
 | |
| }
 | |
| 
 | |
| /******************************************************************************/
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| static void
 | |
| stats_print(arena_t *arena)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	int gap_start;
 | |
| 
 | |
| 	malloc_printf(
 | |
| 	    "          allocated/mapped            nmalloc      ndalloc\n");
 | |
| 
 | |
| 	malloc_printf("small: %12zu %-12s %12llu %12llu\n",
 | |
| 	    arena->stats.allocated_small, "", arena->stats.nmalloc_small,
 | |
| 	    arena->stats.ndalloc_small);
 | |
| 	malloc_printf("large: %12zu %-12s %12llu %12llu\n",
 | |
| 	    arena->stats.allocated_large, "", arena->stats.nmalloc_large,
 | |
| 	    arena->stats.ndalloc_large);
 | |
| 	malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
 | |
| 	    arena->stats.allocated_small + arena->stats.allocated_large,
 | |
| 	    arena->stats.mapped,
 | |
| 	    arena->stats.nmalloc_small + arena->stats.nmalloc_large,
 | |
| 	    arena->stats.ndalloc_small + arena->stats.ndalloc_large);
 | |
| 
 | |
| 	malloc_printf("bins:     bin   size regs pgs  requests   newruns"
 | |
| 	    "    reruns maxruns curruns\n");
 | |
| 	for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
 | |
| 		if (arena->bins[i].stats.nrequests == 0) {
 | |
| 			if (gap_start == -1)
 | |
| 				gap_start = i;
 | |
| 		} else {
 | |
| 			if (gap_start != -1) {
 | |
| 				if (i > gap_start + 1) {
 | |
| 					/* Gap of more than one size class. */
 | |
| 					malloc_printf("[%u..%u]\n",
 | |
| 					    gap_start, i - 1);
 | |
| 				} else {
 | |
| 					/* Gap of one size class. */
 | |
| 					malloc_printf("[%u]\n", gap_start);
 | |
| 				}
 | |
| 				gap_start = -1;
 | |
| 			}
 | |
| 			malloc_printf(
 | |
| 			    "%13u %1s %4u %4u %3u %9llu %9llu"
 | |
| 			    " %9llu %7lu %7lu\n",
 | |
| 			    i,
 | |
| 			    i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
 | |
| 			    arena->bins[i].reg_size,
 | |
| 			    arena->bins[i].nregs,
 | |
| 			    arena->bins[i].run_size >> pagesize_2pow,
 | |
| 			    arena->bins[i].stats.nrequests,
 | |
| 			    arena->bins[i].stats.nruns,
 | |
| 			    arena->bins[i].stats.reruns,
 | |
| 			    arena->bins[i].stats.highruns,
 | |
| 			    arena->bins[i].stats.curruns);
 | |
| 		}
 | |
| 	}
 | |
| 	if (gap_start != -1) {
 | |
| 		if (i > gap_start + 1) {
 | |
| 			/* Gap of more than one size class. */
 | |
| 			malloc_printf("[%u..%u]\n", gap_start, i - 1);
 | |
| 		} else {
 | |
| 			/* Gap of one size class. */
 | |
| 			malloc_printf("[%u]\n", gap_start);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * End Utility functions/macros.
 | |
|  */
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin chunk management functions.
 | |
|  */
 | |
| 
 | |
| #ifndef lint
 | |
| static inline int
 | |
| chunk_comp(chunk_node_t *a, chunk_node_t *b)
 | |
| {
 | |
| 
 | |
| 	assert(a != NULL);
 | |
| 	assert(b != NULL);
 | |
| 
 | |
| 	if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
 | |
| 		return (-1);
 | |
| 	else if (a->chunk == b->chunk)
 | |
| 		return (0);
 | |
| 	else
 | |
| 		return (1);
 | |
| }
 | |
| 
 | |
| /* Generate red-black tree code for chunks. */
 | |
| RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp);
 | |
| #endif
 | |
| 
 | |
| static void *
 | |
| pages_map_align(void *addr, size_t size, int align)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't use MAP_FIXED here, because it can cause the *replacement*
 | |
| 	 * of existing mappings, and we only want to create new mappings.
 | |
| 	 */
 | |
| 	ret = mmap(addr, size, PROT_READ | PROT_WRITE,
 | |
| 	    MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
 | |
| 	assert(ret != NULL);
 | |
| 
 | |
| 	if (ret == MAP_FAILED)
 | |
| 		ret = NULL;
 | |
| 	else if (addr != NULL && ret != addr) {
 | |
| 		/*
 | |
| 		 * We succeeded in mapping memory, but not in the right place.
 | |
| 		 */
 | |
| 		if (munmap(ret, size) == -1) {
 | |
| 			char buf[STRERROR_BUF];
 | |
| 
 | |
| 			STRERROR_R(errno, buf, sizeof(buf));
 | |
| 			_malloc_message(getprogname(),
 | |
| 			    ": (malloc) Error in munmap(): ", buf, "\n");
 | |
| 			if (opt_abort)
 | |
| 				abort();
 | |
| 		}
 | |
| 		ret = NULL;
 | |
| 	}
 | |
| 
 | |
| 	assert(ret == NULL || (addr == NULL && ret != addr)
 | |
| 	    || (addr != NULL && ret == addr));
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| pages_map(void *addr, size_t size)
 | |
| {
 | |
| 
 | |
| 	return pages_map_align(addr, size, 0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| pages_unmap(void *addr, size_t size)
 | |
| {
 | |
| 
 | |
| 	if (munmap(addr, size) == -1) {
 | |
| 		char buf[STRERROR_BUF];
 | |
| 
 | |
| 		STRERROR_R(errno, buf, sizeof(buf));
 | |
| 		_malloc_message(getprogname(),
 | |
| 		    ": (malloc) Error in munmap(): ", buf, "\n");
 | |
| 		if (opt_abort)
 | |
| 			abort();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void *
 | |
| chunk_alloc(size_t size)
 | |
| {
 | |
| 	void *ret, *chunk;
 | |
| 	chunk_node_t *tchunk, *delchunk;
 | |
| 
 | |
| 	assert(size != 0);
 | |
| 	assert((size & chunksize_mask) == 0);
 | |
| 
 | |
| 	malloc_mutex_lock(&chunks_mtx);
 | |
| 
 | |
| 	if (size == chunksize) {
 | |
| 		/*
 | |
| 		 * Check for address ranges that were previously chunks and try
 | |
| 		 * to use them.
 | |
| 		 */
 | |
| 
 | |
| 		/* LINTED */
 | |
| 		tchunk = RB_MIN(chunk_tree_s, &old_chunks);
 | |
| 		while (tchunk != NULL) {
 | |
| 			/* Found an address range.  Try to recycle it. */
 | |
| 
 | |
| 			chunk = tchunk->chunk;
 | |
| 			delchunk = tchunk;
 | |
| 			/* LINTED */
 | |
| 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
 | |
| 
 | |
| 			/* Remove delchunk from the tree. */
 | |
| 			/* LINTED */
 | |
| 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
 | |
| 			base_chunk_node_dealloc(delchunk);
 | |
| 
 | |
| #ifdef USE_BRK
 | |
| 			if ((uintptr_t)chunk >= (uintptr_t)brk_base
 | |
| 			    && (uintptr_t)chunk < (uintptr_t)brk_max) {
 | |
| 				/* Re-use a previously freed brk chunk. */
 | |
| 				ret = chunk;
 | |
| 				goto RETURN;
 | |
| 			}
 | |
| #endif
 | |
| 			if ((ret = pages_map(chunk, size)) != NULL) {
 | |
| 				/* Success. */
 | |
| 				goto RETURN;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to over-allocate, but allow the OS to place the allocation
 | |
| 	 * anywhere.  Beware of size_t wrap-around.
 | |
| 	 */
 | |
| 	if (size + chunksize > size) {
 | |
| 		if ((ret = pages_map_align(NULL, size, chunksize_2pow))
 | |
| 		    != NULL) {
 | |
| 			goto RETURN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef USE_BRK
 | |
| 	/*
 | |
| 	 * Try to create allocations in brk, in order to make full use of
 | |
| 	 * limited address space.
 | |
| 	 */
 | |
| 	if (brk_prev != (void *)-1) {
 | |
| 		void *brk_cur;
 | |
| 		intptr_t incr;
 | |
| 
 | |
| 		/*
 | |
| 		 * The loop is necessary to recover from races with other
 | |
| 		 * threads that are using brk for something other than malloc.
 | |
| 		 */
 | |
| 		malloc_mutex_lock(&brk_mtx);
 | |
| 		do {
 | |
| 			/* Get the current end of brk. */
 | |
| 			brk_cur = sbrk(0);
 | |
| 
 | |
| 			/*
 | |
| 			 * Calculate how much padding is necessary to
 | |
| 			 * chunk-align the end of brk.
 | |
| 			 */
 | |
| 			incr = (intptr_t)size
 | |
| 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
 | |
| 			if (incr == (intptr_t)size) {
 | |
| 				ret = brk_cur;
 | |
| 			} else {
 | |
| 				ret = (void *)((intptr_t)brk_cur + incr);
 | |
| 				incr += size;
 | |
| 			}
 | |
| 
 | |
| 			brk_prev = sbrk(incr);
 | |
| 			if (brk_prev == brk_cur) {
 | |
| 				/* Success. */
 | |
| 				malloc_mutex_unlock(&brk_mtx);
 | |
| 				brk_max = (void *)((intptr_t)ret + size);
 | |
| 				goto RETURN;
 | |
| 			}
 | |
| 		} while (brk_prev != (void *)-1);
 | |
| 		malloc_mutex_unlock(&brk_mtx);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* All strategies for allocation failed. */
 | |
| 	ret = NULL;
 | |
| RETURN:
 | |
| 	if (ret != NULL) {
 | |
| 		chunk_node_t key;
 | |
| 		/*
 | |
| 		 * Clean out any entries in old_chunks that overlap with the
 | |
| 		 * memory we just allocated.
 | |
| 		 */
 | |
| 		key.chunk = ret;
 | |
| 		/* LINTED */
 | |
| 		tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
 | |
| 		while (tchunk != NULL
 | |
| 		    && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
 | |
| 		    && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
 | |
| 			delchunk = tchunk;
 | |
| 			/* LINTED */
 | |
| 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
 | |
| 			/* LINTED */
 | |
| 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
 | |
| 			base_chunk_node_dealloc(delchunk);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| #ifdef MALLOC_STATS
 | |
| 	if (ret != NULL) {
 | |
| 		stats_chunks.nchunks += (size / chunksize);
 | |
| 		stats_chunks.curchunks += (size / chunksize);
 | |
| 	}
 | |
| 	if (stats_chunks.curchunks > stats_chunks.highchunks)
 | |
| 		stats_chunks.highchunks = stats_chunks.curchunks;
 | |
| #endif
 | |
| 	malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 	assert(CHUNK_ADDR2BASE(ret) == ret);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void
 | |
| chunk_dealloc(void *chunk, size_t size)
 | |
| {
 | |
| 	chunk_node_t *node;
 | |
| 
 | |
| 	assert(chunk != NULL);
 | |
| 	assert(CHUNK_ADDR2BASE(chunk) == chunk);
 | |
| 	assert(size != 0);
 | |
| 	assert((size & chunksize_mask) == 0);
 | |
| 
 | |
| 	malloc_mutex_lock(&chunks_mtx);
 | |
| 
 | |
| #ifdef USE_BRK
 | |
| 	if ((uintptr_t)chunk >= (uintptr_t)brk_base
 | |
| 	    && (uintptr_t)chunk < (uintptr_t)brk_max) {
 | |
| 		void *brk_cur;
 | |
| 
 | |
| 		malloc_mutex_lock(&brk_mtx);
 | |
| 		/* Get the current end of brk. */
 | |
| 		brk_cur = sbrk(0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to shrink the data segment if this chunk is at the end
 | |
| 		 * of the data segment.  The sbrk() call here is subject to a
 | |
| 		 * race condition with threads that use brk(2) or sbrk(2)
 | |
| 		 * directly, but the alternative would be to leak memory for
 | |
| 		 * the sake of poorly designed multi-threaded programs.
 | |
| 		 */
 | |
| 		if (brk_cur == brk_max
 | |
| 		    && (void *)((uintptr_t)chunk + size) == brk_max
 | |
| 		    && sbrk(-(intptr_t)size) == brk_max) {
 | |
| 			malloc_mutex_unlock(&brk_mtx);
 | |
| 			if (brk_prev == brk_max) {
 | |
| 				/* Success. */
 | |
| 				brk_prev = (void *)((intptr_t)brk_max
 | |
| 				    - (intptr_t)size);
 | |
| 				brk_max = brk_prev;
 | |
| 			}
 | |
| 		} else {
 | |
| 			size_t offset;
 | |
| 
 | |
| 			malloc_mutex_unlock(&brk_mtx);
 | |
| 			madvise(chunk, size, MADV_FREE);
 | |
| 
 | |
| 			/*
 | |
| 			 * Iteratively create records of each chunk-sized
 | |
| 			 * memory region that 'chunk' is comprised of, so that
 | |
| 			 * the address range can be recycled if memory usage
 | |
| 			 * increases later on.
 | |
| 			 */
 | |
| 			for (offset = 0; offset < size; offset += chunksize) {
 | |
| 				node = base_chunk_node_alloc();
 | |
| 				if (node == NULL)
 | |
| 					break;
 | |
| 
 | |
| 				node->chunk = (void *)((uintptr_t)chunk
 | |
| 				    + (uintptr_t)offset);
 | |
| 				node->size = chunksize;
 | |
| 				/* LINTED */
 | |
| 				RB_INSERT(chunk_tree_s, &old_chunks, node);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| #endif
 | |
| 		pages_unmap(chunk, size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make a record of the chunk's address, so that the address
 | |
| 		 * range can be recycled if memory usage increases later on.
 | |
| 		 * Don't bother to create entries if (size > chunksize), since
 | |
| 		 * doing so could cause scalability issues for truly gargantuan
 | |
| 		 * objects (many gigabytes or larger).
 | |
| 		 */
 | |
| 		if (size == chunksize) {
 | |
| 			node = base_chunk_node_alloc();
 | |
| 			if (node != NULL) {
 | |
| 				node->chunk = (void *)(uintptr_t)chunk;
 | |
| 				node->size = chunksize;
 | |
| 				/* LINTED */
 | |
| 				RB_INSERT(chunk_tree_s, &old_chunks, node);
 | |
| 			}
 | |
| 		}
 | |
| #ifdef USE_BRK
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 	stats_chunks.curchunks -= (size / chunksize);
 | |
| #endif
 | |
| 	malloc_mutex_unlock(&chunks_mtx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End chunk management functions.
 | |
|  */
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin arena.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Choose an arena based on a per-thread and (optimistically) per-CPU value.
 | |
|  *
 | |
|  * We maintain at least one block of arenas.  Usually there are more.
 | |
|  * The blocks are $ncpu arenas in size.  Whole blocks are 'hashed'
 | |
|  * amongst threads.  To accomplish this, next_arena advances only in
 | |
|  * ncpu steps.
 | |
|  */
 | |
| static __noinline arena_t *
 | |
| choose_arena_hard(void)
 | |
| {
 | |
| 	unsigned i, curcpu;
 | |
| 	arena_t **map;
 | |
| 
 | |
| 	/* Initialize the current block of arenas and advance to next. */
 | |
| 	malloc_mutex_lock(&arenas_mtx);
 | |
| 	assert(next_arena % ncpus == 0);
 | |
| 	assert(narenas % ncpus == 0);
 | |
| 	map = &arenas[next_arena];
 | |
| 	set_arenas_map(map);
 | |
| 	for (i = 0; i < ncpus; i++) {
 | |
| 		if (arenas[next_arena] == NULL)
 | |
| 			arenas_extend(next_arena);
 | |
| 		next_arena = (next_arena + 1) % narenas;
 | |
| 	}
 | |
| 	malloc_mutex_unlock(&arenas_mtx);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we were unable to allocate an arena above, then default to
 | |
| 	 * the first arena, which is always present.
 | |
| 	 */
 | |
| 	curcpu = thr_curcpu();
 | |
| 	if (map[curcpu] != NULL)
 | |
| 		return map[curcpu];
 | |
| 	return arenas[0];
 | |
| }
 | |
| 
 | |
| static inline arena_t *
 | |
| choose_arena(void)
 | |
| {
 | |
| 	unsigned curcpu;
 | |
| 	arena_t **map;
 | |
| 
 | |
| 	map = get_arenas_map();
 | |
| 	curcpu = thr_curcpu();
 | |
| 	if (__predict_true(map != NULL && map[curcpu] != NULL))
 | |
| 		return map[curcpu];
 | |
| 
 | |
|         return choose_arena_hard();
 | |
| }
 | |
| 
 | |
| #ifndef lint
 | |
| static inline int
 | |
| arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
 | |
| {
 | |
| 
 | |
| 	assert(a != NULL);
 | |
| 	assert(b != NULL);
 | |
| 
 | |
| 	if ((uintptr_t)a < (uintptr_t)b)
 | |
| 		return (-1);
 | |
| 	else if (a == b)
 | |
| 		return (0);
 | |
| 	else
 | |
| 		return (1);
 | |
| }
 | |
| 
 | |
| /* Generate red-black tree code for arena chunks. */
 | |
| RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp);
 | |
| #endif
 | |
| 
 | |
| #ifndef lint
 | |
| static inline int
 | |
| arena_run_comp(arena_run_t *a, arena_run_t *b)
 | |
| {
 | |
| 
 | |
| 	assert(a != NULL);
 | |
| 	assert(b != NULL);
 | |
| 
 | |
| 	if ((uintptr_t)a < (uintptr_t)b)
 | |
| 		return (-1);
 | |
| 	else if (a == b)
 | |
| 		return (0);
 | |
| 	else
 | |
| 		return (1);
 | |
| }
 | |
| 
 | |
| /* Generate red-black tree code for arena runs. */
 | |
| RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp);
 | |
| #endif
 | |
| 
 | |
| static inline void *
 | |
| arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
 | |
| {
 | |
| 	void *ret;
 | |
| 	unsigned i, mask, bit, regind;
 | |
| 
 | |
| 	assert(run->magic == ARENA_RUN_MAGIC);
 | |
| 	assert(run->regs_minelm < bin->regs_mask_nelms);
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the first check outside the loop, so that run->regs_minelm can
 | |
| 	 * be updated unconditionally, without the possibility of updating it
 | |
| 	 * multiple times.
 | |
| 	 */
 | |
| 	i = run->regs_minelm;
 | |
| 	mask = run->regs_mask[i];
 | |
| 	if (mask != 0) {
 | |
| 		/* Usable allocation found. */
 | |
| 		bit = ffs((int)mask) - 1;
 | |
| 
 | |
| 		regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
 | |
| 		ret = (void *)(((uintptr_t)run) + bin->reg0_offset
 | |
| 		    + (bin->reg_size * regind));
 | |
| 
 | |
| 		/* Clear bit. */
 | |
| 		mask ^= (1 << bit);
 | |
| 		run->regs_mask[i] = mask;
 | |
| 
 | |
| 		return (ret);
 | |
| 	}
 | |
| 
 | |
| 	for (i++; i < bin->regs_mask_nelms; i++) {
 | |
| 		mask = run->regs_mask[i];
 | |
| 		if (mask != 0) {
 | |
| 			/* Usable allocation found. */
 | |
| 			bit = ffs((int)mask) - 1;
 | |
| 
 | |
| 			regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
 | |
| 			ret = (void *)(((uintptr_t)run) + bin->reg0_offset
 | |
| 			    + (bin->reg_size * regind));
 | |
| 
 | |
| 			/* Clear bit. */
 | |
| 			mask ^= (1 << bit);
 | |
| 			run->regs_mask[i] = mask;
 | |
| 
 | |
| 			/*
 | |
| 			 * Make a note that nothing before this element
 | |
| 			 * contains a free region.
 | |
| 			 */
 | |
| 			run->regs_minelm = i; /* Low payoff: + (mask == 0); */
 | |
| 
 | |
| 			return (ret);
 | |
| 		}
 | |
| 	}
 | |
| 	/* Not reached. */
 | |
| 	/* LINTED */
 | |
| 	assert(0);
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
 | |
| {
 | |
| 	/*
 | |
| 	 * To divide by a number D that is not a power of two we multiply
 | |
| 	 * by (2^21 / D) and then right shift by 21 positions.
 | |
| 	 *
 | |
| 	 *   X / D
 | |
| 	 *
 | |
| 	 * becomes
 | |
| 	 *
 | |
| 	 *   (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
 | |
| 	 */
 | |
| #define SIZE_INV_SHIFT 21
 | |
| #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
 | |
| 	static const unsigned size_invs[] = {
 | |
| 	    SIZE_INV(3),
 | |
| 	    SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
 | |
| 	    SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
 | |
| 	    SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
 | |
| 	    SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
 | |
| 	    SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
 | |
| 	    SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
 | |
| 	    SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
 | |
| #if (QUANTUM_2POW_MIN < 4)
 | |
| 	    ,
 | |
| 	    SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
 | |
| 	    SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
 | |
| 	    SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
 | |
| 	    SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
 | |
| 	    SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
 | |
| 	    SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
 | |
| 	    SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
 | |
| 	    SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
 | |
| #endif
 | |
| 	};
 | |
| 	unsigned diff, regind, elm, bit;
 | |
| 
 | |
| 	/* LINTED */
 | |
| 	assert(run->magic == ARENA_RUN_MAGIC);
 | |
| 	assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
 | |
| 	    >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid doing division with a variable divisor if possible.  Using
 | |
| 	 * actual division here can reduce allocator throughput by over 20%!
 | |
| 	 */
 | |
| 	diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
 | |
| 	if ((size & (size - 1)) == 0) {
 | |
| 		/*
 | |
| 		 * log2_table allows fast division of a power of two in the
 | |
| 		 * [1..128] range.
 | |
| 		 *
 | |
| 		 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
 | |
| 		 */
 | |
| 		static const unsigned char log2_table[] = {
 | |
| 		    0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
 | |
| 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
 | |
| 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
 | |
| 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
| 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
 | |
| 		};
 | |
| 
 | |
| 		if (size <= 128)
 | |
| 			regind = (diff >> log2_table[size - 1]);
 | |
| 		else if (size <= 32768)
 | |
| 			regind = diff >> (8 + log2_table[(size >> 8) - 1]);
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * The page size is too large for us to use the lookup
 | |
| 			 * table.  Use real division.
 | |
| 			 */
 | |
| 			regind = (unsigned)(diff / size);
 | |
| 		}
 | |
| 	} else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
 | |
| 	    << QUANTUM_2POW_MIN) + 2) {
 | |
| 		regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
 | |
| 		regind >>= SIZE_INV_SHIFT;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * size_invs isn't large enough to handle this size class, so
 | |
| 		 * calculate regind using actual division.  This only happens
 | |
| 		 * if the user increases small_max via the 'S' runtime
 | |
| 		 * configuration option.
 | |
| 		 */
 | |
| 		regind = (unsigned)(diff / size);
 | |
| 	};
 | |
| 	assert(diff == regind * size);
 | |
| 	assert(regind < bin->nregs);
 | |
| 
 | |
| 	elm = regind >> (SIZEOF_INT_2POW + 3);
 | |
| 	if (elm < run->regs_minelm)
 | |
| 		run->regs_minelm = elm;
 | |
| 	bit = regind - (elm << (SIZEOF_INT_2POW + 3));
 | |
| 	assert((run->regs_mask[elm] & (1 << bit)) == 0);
 | |
| 	run->regs_mask[elm] |= (1 << bit);
 | |
| #undef SIZE_INV
 | |
| #undef SIZE_INV_SHIFT
 | |
| }
 | |
| 
 | |
| static void
 | |
| arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
 | |
| {
 | |
| 	arena_chunk_t *chunk;
 | |
| 	unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
 | |
| 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
 | |
| 	    >> pagesize_2pow);
 | |
| 	total_pages = chunk->map[run_ind].npages;
 | |
| 	need_pages = (unsigned)(size >> pagesize_2pow);
 | |
| 	assert(need_pages <= total_pages);
 | |
| 	rem_pages = total_pages - need_pages;
 | |
| 
 | |
| 	/* Split enough pages from the front of run to fit allocation size. */
 | |
| 	map_offset = run_ind;
 | |
| 	for (i = 0; i < need_pages; i++) {
 | |
| 		chunk->map[map_offset + i].npages = need_pages;
 | |
| 		chunk->map[map_offset + i].pos = i;
 | |
| 	}
 | |
| 
 | |
| 	/* Keep track of trailing unused pages for later use. */
 | |
| 	if (rem_pages > 0) {
 | |
| 		/* Update map for trailing pages. */
 | |
| 		map_offset += need_pages;
 | |
| 		chunk->map[map_offset].npages = rem_pages;
 | |
| 		chunk->map[map_offset].pos = POS_FREE;
 | |
| 		chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
 | |
| 		chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
 | |
| 	}
 | |
| 
 | |
| 	chunk->pages_used += need_pages;
 | |
| }
 | |
| 
 | |
| static arena_chunk_t *
 | |
| arena_chunk_alloc(arena_t *arena)
 | |
| {
 | |
| 	arena_chunk_t *chunk;
 | |
| 
 | |
| 	if (arena->spare != NULL) {
 | |
| 		chunk = arena->spare;
 | |
| 		arena->spare = NULL;
 | |
| 
 | |
| 		/* LINTED */
 | |
| 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
 | |
| 	} else {
 | |
| 		chunk = (arena_chunk_t *)chunk_alloc(chunksize);
 | |
| 		if (chunk == NULL)
 | |
| 			return (NULL);
 | |
| #ifdef MALLOC_STATS
 | |
| 		arena->stats.mapped += chunksize;
 | |
| #endif
 | |
| 
 | |
| 		chunk->arena = arena;
 | |
| 
 | |
| 		/* LINTED */
 | |
| 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
 | |
| 
 | |
| 		/*
 | |
| 		 * Claim that no pages are in use, since the header is merely
 | |
| 		 * overhead.
 | |
| 		 */
 | |
| 		chunk->pages_used = 0;
 | |
| 
 | |
| 		chunk->max_frun_npages = chunk_npages -
 | |
| 		    arena_chunk_header_npages;
 | |
| 		chunk->min_frun_ind = arena_chunk_header_npages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Initialize enough of the map to support one maximal free run.
 | |
| 		 */
 | |
| 		chunk->map[arena_chunk_header_npages].npages = chunk_npages -
 | |
| 		    arena_chunk_header_npages;
 | |
| 		chunk->map[arena_chunk_header_npages].pos = POS_FREE;
 | |
| 		chunk->map[chunk_npages - 1].npages = chunk_npages -
 | |
| 		    arena_chunk_header_npages;
 | |
| 		chunk->map[chunk_npages - 1].pos = POS_FREE;
 | |
| 	}
 | |
| 
 | |
| 	return (chunk);
 | |
| }
 | |
| 
 | |
| static void
 | |
| arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
 | |
| {
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove chunk from the chunk tree, regardless of whether this chunk
 | |
| 	 * will be cached, so that the arena does not use it.
 | |
| 	 */
 | |
| 	/* LINTED */
 | |
| 	RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
 | |
| 
 | |
| 	if (opt_hint == false) {
 | |
| 		if (arena->spare != NULL) {
 | |
| 			chunk_dealloc((void *)arena->spare, chunksize);
 | |
| #ifdef MALLOC_STATS
 | |
| 			arena->stats.mapped -= chunksize;
 | |
| #endif
 | |
| 		}
 | |
| 		arena->spare = chunk;
 | |
| 	} else {
 | |
| 		assert(arena->spare == NULL);
 | |
| 		chunk_dealloc((void *)chunk, chunksize);
 | |
| #ifdef MALLOC_STATS
 | |
| 		arena->stats.mapped -= chunksize;
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static arena_run_t *
 | |
| arena_run_alloc(arena_t *arena, size_t size)
 | |
| {
 | |
| 	arena_chunk_t *chunk;
 | |
| 	arena_run_t *run;
 | |
| 	unsigned need_npages, limit_pages, compl_need_npages;
 | |
| 
 | |
| 	assert(size <= (chunksize - (arena_chunk_header_npages <<
 | |
| 	    pagesize_2pow)));
 | |
| 	assert((size & pagesize_mask) == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Search through arena's chunks in address order for a free run that is
 | |
| 	 * large enough.  Look for the first fit.
 | |
| 	 */
 | |
| 	need_npages = (unsigned)(size >> pagesize_2pow);
 | |
| 	limit_pages = chunk_npages - arena_chunk_header_npages;
 | |
| 	compl_need_npages = limit_pages - need_npages;
 | |
| 	/* LINTED */
 | |
| 	RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
 | |
| 		/*
 | |
| 		 * Avoid searching this chunk if there are not enough
 | |
| 		 * contiguous free pages for there to possibly be a large
 | |
| 		 * enough free run.
 | |
| 		 */
 | |
| 		if (chunk->pages_used <= compl_need_npages &&
 | |
| 		    need_npages <= chunk->max_frun_npages) {
 | |
| 			arena_chunk_map_t *mapelm;
 | |
| 			unsigned i;
 | |
| 			unsigned max_frun_npages = 0;
 | |
| 			unsigned min_frun_ind = chunk_npages;
 | |
| 
 | |
| 			assert(chunk->min_frun_ind >=
 | |
| 			    arena_chunk_header_npages);
 | |
| 			for (i = chunk->min_frun_ind; i < chunk_npages;) {
 | |
| 				mapelm = &chunk->map[i];
 | |
| 				if (mapelm->pos == POS_FREE) {
 | |
| 					if (mapelm->npages >= need_npages) {
 | |
| 						run = (arena_run_t *)
 | |
| 						    ((uintptr_t)chunk + (i <<
 | |
| 						    pagesize_2pow));
 | |
| 						/* Update page map. */
 | |
| 						arena_run_split(arena, run,
 | |
| 						    size);
 | |
| 						return (run);
 | |
| 					}
 | |
| 					if (mapelm->npages >
 | |
| 					    max_frun_npages) {
 | |
| 						max_frun_npages =
 | |
| 						    mapelm->npages;
 | |
| 					}
 | |
| 					if (i < min_frun_ind) {
 | |
| 						min_frun_ind = i;
 | |
| 						if (i < chunk->min_frun_ind)
 | |
| 							chunk->min_frun_ind = i;
 | |
| 					}
 | |
| 				}
 | |
| 				i += mapelm->npages;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Search failure.  Reset cached chunk->max_frun_npages.
 | |
| 			 * chunk->min_frun_ind was already reset above (if
 | |
| 			 * necessary).
 | |
| 			 */
 | |
| 			chunk->max_frun_npages = max_frun_npages;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No usable runs.  Create a new chunk from which to allocate the run.
 | |
| 	 */
 | |
| 	chunk = arena_chunk_alloc(arena);
 | |
| 	if (chunk == NULL)
 | |
| 		return (NULL);
 | |
| 	run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
 | |
| 	    pagesize_2pow));
 | |
| 	/* Update page map. */
 | |
| 	arena_run_split(arena, run, size);
 | |
| 	return (run);
 | |
| }
 | |
| 
 | |
| static void
 | |
| arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
 | |
| {
 | |
| 	arena_chunk_t *chunk;
 | |
| 	unsigned run_ind, run_pages;
 | |
| 
 | |
| 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
 | |
| 
 | |
| 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
 | |
| 	    >> pagesize_2pow);
 | |
| 	assert(run_ind >= arena_chunk_header_npages);
 | |
| 	assert(run_ind < (chunksize >> pagesize_2pow));
 | |
| 	run_pages = (unsigned)(size >> pagesize_2pow);
 | |
| 	assert(run_pages == chunk->map[run_ind].npages);
 | |
| 
 | |
| 	/* Subtract pages from count of pages used in chunk. */
 | |
| 	chunk->pages_used -= run_pages;
 | |
| 
 | |
| 	/* Mark run as deallocated. */
 | |
| 	assert(chunk->map[run_ind].npages == run_pages);
 | |
| 	chunk->map[run_ind].pos = POS_FREE;
 | |
| 	assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
 | |
| 	chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Tell the kernel that we don't need the data in this run, but only if
 | |
| 	 * requested via runtime configuration.
 | |
| 	 */
 | |
| 	if (opt_hint)
 | |
| 		madvise(run, size, MADV_FREE);
 | |
| 
 | |
| 	/* Try to coalesce with neighboring runs. */
 | |
| 	if (run_ind > arena_chunk_header_npages &&
 | |
| 	    chunk->map[run_ind - 1].pos == POS_FREE) {
 | |
| 		unsigned prev_npages;
 | |
| 
 | |
| 		/* Coalesce with previous run. */
 | |
| 		prev_npages = chunk->map[run_ind - 1].npages;
 | |
| 		run_ind -= prev_npages;
 | |
| 		assert(chunk->map[run_ind].npages == prev_npages);
 | |
| 		assert(chunk->map[run_ind].pos == POS_FREE);
 | |
| 		run_pages += prev_npages;
 | |
| 
 | |
| 		chunk->map[run_ind].npages = run_pages;
 | |
| 		assert(chunk->map[run_ind].pos == POS_FREE);
 | |
| 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
 | |
| 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
 | |
| 	}
 | |
| 
 | |
| 	if (run_ind + run_pages < chunk_npages &&
 | |
| 	    chunk->map[run_ind + run_pages].pos == POS_FREE) {
 | |
| 		unsigned next_npages;
 | |
| 
 | |
| 		/* Coalesce with next run. */
 | |
| 		next_npages = chunk->map[run_ind + run_pages].npages;
 | |
| 		run_pages += next_npages;
 | |
| 		assert(chunk->map[run_ind + run_pages - 1].npages ==
 | |
| 		    next_npages);
 | |
| 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
 | |
| 
 | |
| 		chunk->map[run_ind].npages = run_pages;
 | |
| 		chunk->map[run_ind].pos = POS_FREE;
 | |
| 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
 | |
| 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
 | |
| 	}
 | |
| 
 | |
| 	if (chunk->map[run_ind].npages > chunk->max_frun_npages)
 | |
| 		chunk->max_frun_npages = chunk->map[run_ind].npages;
 | |
| 	if (run_ind < chunk->min_frun_ind)
 | |
| 		chunk->min_frun_ind = run_ind;
 | |
| 
 | |
| 	/* Deallocate chunk if it is now completely unused. */
 | |
| 	if (chunk->pages_used == 0)
 | |
| 		arena_chunk_dealloc(arena, chunk);
 | |
| }
 | |
| 
 | |
| static arena_run_t *
 | |
| arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
 | |
| {
 | |
| 	arena_run_t *run;
 | |
| 	unsigned i, remainder;
 | |
| 
 | |
| 	/* Look for a usable run. */
 | |
| 	/* LINTED */
 | |
| 	if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
 | |
| 		/* run is guaranteed to have available space. */
 | |
| 		/* LINTED */
 | |
| 		RB_REMOVE(arena_run_tree_s, &bin->runs, run);
 | |
| #ifdef MALLOC_STATS
 | |
| 		bin->stats.reruns++;
 | |
| #endif
 | |
| 		return (run);
 | |
| 	}
 | |
| 	/* No existing runs have any space available. */
 | |
| 
 | |
| 	/* Allocate a new run. */
 | |
| 	run = arena_run_alloc(arena, bin->run_size);
 | |
| 	if (run == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	/* Initialize run internals. */
 | |
| 	run->bin = bin;
 | |
| 
 | |
| 	for (i = 0; i < bin->regs_mask_nelms; i++)
 | |
| 		run->regs_mask[i] = UINT_MAX;
 | |
| 	remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
 | |
| 	if (remainder != 0) {
 | |
| 		/* The last element has spare bits that need to be unset. */
 | |
| 		run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
 | |
| 		    - remainder));
 | |
| 	}
 | |
| 
 | |
| 	run->regs_minelm = 0;
 | |
| 
 | |
| 	run->nfree = bin->nregs;
 | |
| #ifdef MALLOC_DEBUG
 | |
| 	run->magic = ARENA_RUN_MAGIC;
 | |
| #endif
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 	bin->stats.nruns++;
 | |
| 	bin->stats.curruns++;
 | |
| 	if (bin->stats.curruns > bin->stats.highruns)
 | |
| 		bin->stats.highruns = bin->stats.curruns;
 | |
| #endif
 | |
| 	return (run);
 | |
| }
 | |
| 
 | |
| /* bin->runcur must have space available before this function is called. */
 | |
| static inline void *
 | |
| arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	assert(run->magic == ARENA_RUN_MAGIC);
 | |
| 	assert(run->nfree > 0);
 | |
| 
 | |
| 	ret = arena_run_reg_alloc(run, bin);
 | |
| 	assert(ret != NULL);
 | |
| 	run->nfree--;
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
 | |
| static void *
 | |
| arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
 | |
| {
 | |
| 
 | |
| 	bin->runcur = arena_bin_nonfull_run_get(arena, bin);
 | |
| 	if (bin->runcur == NULL)
 | |
| 		return (NULL);
 | |
| 	assert(bin->runcur->magic == ARENA_RUN_MAGIC);
 | |
| 	assert(bin->runcur->nfree > 0);
 | |
| 
 | |
| 	return (arena_bin_malloc_easy(arena, bin, bin->runcur));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate bin->run_size such that it meets the following constraints:
 | |
|  *
 | |
|  *   *) bin->run_size >= min_run_size
 | |
|  *   *) bin->run_size <= arena_maxclass
 | |
|  *   *) bin->run_size <= RUN_MAX_SMALL
 | |
|  *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
 | |
|  *
 | |
|  * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
 | |
|  * also calculated here, since these settings are all interdependent.
 | |
|  */
 | |
| static size_t
 | |
| arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
 | |
| {
 | |
| 	size_t try_run_size, good_run_size;
 | |
| 	unsigned good_nregs, good_mask_nelms, good_reg0_offset;
 | |
| 	unsigned try_nregs, try_mask_nelms, try_reg0_offset;
 | |
| 
 | |
| 	assert(min_run_size >= pagesize);
 | |
| 	assert(min_run_size <= arena_maxclass);
 | |
| 	assert(min_run_size <= RUN_MAX_SMALL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate known-valid settings before entering the run_size
 | |
| 	 * expansion loop, so that the first part of the loop always copies
 | |
| 	 * valid settings.
 | |
| 	 *
 | |
| 	 * The do..while loop iteratively reduces the number of regions until
 | |
| 	 * the run header and the regions no longer overlap.  A closed formula
 | |
| 	 * would be quite messy, since there is an interdependency between the
 | |
| 	 * header's mask length and the number of regions.
 | |
| 	 */
 | |
| 	try_run_size = min_run_size;
 | |
| 	try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
 | |
| 	    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
 | |
| 	do {
 | |
| 		try_nregs--;
 | |
| 		try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
 | |
| 		    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
 | |
| 		try_reg0_offset = (unsigned)(try_run_size -
 | |
| 		    (try_nregs * bin->reg_size));
 | |
| 	} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
 | |
| 	    > try_reg0_offset);
 | |
| 
 | |
| 	/* run_size expansion loop. */
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Copy valid settings before trying more aggressive settings.
 | |
| 		 */
 | |
| 		good_run_size = try_run_size;
 | |
| 		good_nregs = try_nregs;
 | |
| 		good_mask_nelms = try_mask_nelms;
 | |
| 		good_reg0_offset = try_reg0_offset;
 | |
| 
 | |
| 		/* Try more aggressive settings. */
 | |
| 		try_run_size += pagesize;
 | |
| 		try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
 | |
| 		    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
 | |
| 		do {
 | |
| 			try_nregs--;
 | |
| 			try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
 | |
| 			    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
 | |
| 			    1 : 0);
 | |
| 			try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
 | |
| 			    bin->reg_size));
 | |
| 		} while (sizeof(arena_run_t) + (sizeof(unsigned) *
 | |
| 		    (try_mask_nelms - 1)) > try_reg0_offset);
 | |
| 	} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
 | |
| 	    && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
 | |
| 	    && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
 | |
| 
 | |
| 	assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
 | |
| 	    <= good_reg0_offset);
 | |
| 	assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
 | |
| 
 | |
| 	/* Copy final settings. */
 | |
| 	bin->run_size = good_run_size;
 | |
| 	bin->nregs = good_nregs;
 | |
| 	bin->regs_mask_nelms = good_mask_nelms;
 | |
| 	bin->reg0_offset = good_reg0_offset;
 | |
| 
 | |
| 	return (good_run_size);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| arena_malloc(arena_t *arena, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	assert(arena != NULL);
 | |
| 	assert(arena->magic == ARENA_MAGIC);
 | |
| 	assert(size != 0);
 | |
| 	assert(QUANTUM_CEILING(size) <= arena_maxclass);
 | |
| 
 | |
| 	if (size <= bin_maxclass) {
 | |
| 		arena_bin_t *bin;
 | |
| 		arena_run_t *run;
 | |
| 
 | |
| 		/* Small allocation. */
 | |
| 
 | |
| 		if (size < small_min) {
 | |
| 			/* Tiny. */
 | |
| 			size = pow2_ceil(size);
 | |
| 			bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
 | |
| 			    1)))];
 | |
| #if (!defined(NDEBUG) || defined(MALLOC_STATS))
 | |
| 			/*
 | |
| 			 * Bin calculation is always correct, but we may need
 | |
| 			 * to fix size for the purposes of assertions and/or
 | |
| 			 * stats accuracy.
 | |
| 			 */
 | |
| 			if (size < (1 << TINY_MIN_2POW))
 | |
| 				size = (1 << TINY_MIN_2POW);
 | |
| #endif
 | |
| 		} else if (size <= small_max) {
 | |
| 			/* Quantum-spaced. */
 | |
| 			size = QUANTUM_CEILING(size);
 | |
| 			bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
 | |
| 			    - 1];
 | |
| 		} else {
 | |
| 			/* Sub-page. */
 | |
| 			size = pow2_ceil(size);
 | |
| 			bin = &arena->bins[ntbins + nqbins
 | |
| 			    + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
 | |
| 		}
 | |
| 		assert(size == bin->reg_size);
 | |
| 
 | |
| 		malloc_mutex_lock(&arena->mtx);
 | |
| 		if ((run = bin->runcur) != NULL && run->nfree > 0)
 | |
| 			ret = arena_bin_malloc_easy(arena, bin, run);
 | |
| 		else
 | |
| 			ret = arena_bin_malloc_hard(arena, bin);
 | |
| 
 | |
| 		if (ret == NULL) {
 | |
| 			malloc_mutex_unlock(&arena->mtx);
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 		bin->stats.nrequests++;
 | |
| 		arena->stats.nmalloc_small++;
 | |
| 		arena->stats.allocated_small += size;
 | |
| #endif
 | |
| 	} else {
 | |
| 		/* Large allocation. */
 | |
| 		size = PAGE_CEILING(size);
 | |
| 		malloc_mutex_lock(&arena->mtx);
 | |
| 		ret = (void *)arena_run_alloc(arena, size);
 | |
| 		if (ret == NULL) {
 | |
| 			malloc_mutex_unlock(&arena->mtx);
 | |
| 			return (NULL);
 | |
| 		}
 | |
| #ifdef MALLOC_STATS
 | |
| 		arena->stats.nmalloc_large++;
 | |
| 		arena->stats.allocated_large += size;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	malloc_mutex_unlock(&arena->mtx);
 | |
| 
 | |
| 	if (opt_junk)
 | |
| 		memset(ret, 0xa5, size);
 | |
| 	else if (opt_zero)
 | |
| 		memset(ret, 0, size);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
 | |
|     unsigned npages)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	assert(npages > 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Modifiy the map such that arena_run_dalloc() sees the run as
 | |
| 	 * separately allocated.
 | |
| 	 */
 | |
| 	for (i = 0; i < npages; i++) {
 | |
| 		chunk->map[pageind + i].npages = npages;
 | |
| 		chunk->map[pageind + i].pos = i;
 | |
| 	}
 | |
| 	arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
 | |
| 	    pagesize_2pow)), npages << pagesize_2pow);
 | |
| }
 | |
| 
 | |
| /* Only handles large allocations that require more than page alignment. */
 | |
| static void *
 | |
| arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t offset;
 | |
| 	arena_chunk_t *chunk;
 | |
| 	unsigned pageind, i, npages;
 | |
| 
 | |
| 	assert((size & pagesize_mask) == 0);
 | |
| 	assert((alignment & pagesize_mask) == 0);
 | |
| 
 | |
| 	npages = (unsigned)(size >> pagesize_2pow);
 | |
| 
 | |
| 	malloc_mutex_lock(&arena->mtx);
 | |
| 	ret = (void *)arena_run_alloc(arena, alloc_size);
 | |
| 	if (ret == NULL) {
 | |
| 		malloc_mutex_unlock(&arena->mtx);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
 | |
| 
 | |
| 	offset = (uintptr_t)ret & (alignment - 1);
 | |
| 	assert((offset & pagesize_mask) == 0);
 | |
| 	assert(offset < alloc_size);
 | |
| 	if (offset == 0) {
 | |
| 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
 | |
| 		    pagesize_2pow);
 | |
| 
 | |
| 		/* Update the map for the run to be kept. */
 | |
| 		for (i = 0; i < npages; i++) {
 | |
| 			chunk->map[pageind + i].npages = npages;
 | |
| 			assert(chunk->map[pageind + i].pos == i);
 | |
| 		}
 | |
| 
 | |
| 		/* Trim trailing space. */
 | |
| 		arena_palloc_trim(arena, chunk, pageind + npages,
 | |
| 		    (unsigned)((alloc_size - size) >> pagesize_2pow));
 | |
| 	} else {
 | |
| 		size_t leadsize, trailsize;
 | |
| 
 | |
| 		leadsize = alignment - offset;
 | |
| 		ret = (void *)((uintptr_t)ret + leadsize);
 | |
| 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
 | |
| 		    pagesize_2pow);
 | |
| 
 | |
| 		/* Update the map for the run to be kept. */
 | |
| 		for (i = 0; i < npages; i++) {
 | |
| 			chunk->map[pageind + i].npages = npages;
 | |
| 			chunk->map[pageind + i].pos = i;
 | |
| 		}
 | |
| 
 | |
| 		/* Trim leading space. */
 | |
| 		arena_palloc_trim(arena, chunk,
 | |
| 		    (unsigned)(pageind - (leadsize >> pagesize_2pow)),
 | |
| 		    (unsigned)(leadsize >> pagesize_2pow));
 | |
| 
 | |
| 		trailsize = alloc_size - leadsize - size;
 | |
| 		if (trailsize != 0) {
 | |
| 			/* Trim trailing space. */
 | |
| 			assert(trailsize < alloc_size);
 | |
| 			arena_palloc_trim(arena, chunk, pageind + npages,
 | |
| 			    (unsigned)(trailsize >> pagesize_2pow));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 	arena->stats.nmalloc_large++;
 | |
| 	arena->stats.allocated_large += size;
 | |
| #endif
 | |
| 	malloc_mutex_unlock(&arena->mtx);
 | |
| 
 | |
| 	if (opt_junk)
 | |
| 		memset(ret, 0xa5, size);
 | |
| 	else if (opt_zero)
 | |
| 		memset(ret, 0, size);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /* Return the size of the allocation pointed to by ptr. */
 | |
| static size_t
 | |
| arena_salloc(const void *ptr)
 | |
| {
 | |
| 	size_t ret;
 | |
| 	arena_chunk_t *chunk;
 | |
| 	arena_chunk_map_t *mapelm;
 | |
| 	unsigned pageind;
 | |
| 
 | |
| 	assert(ptr != NULL);
 | |
| 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
 | |
| 
 | |
| 	/*
 | |
| 	 * No arena data structures that we query here can change in a way that
 | |
| 	 * affects this function, so we don't need to lock.
 | |
| 	 */
 | |
| 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
 | |
| 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
 | |
| 	    pagesize_2pow);
 | |
| 	mapelm = &chunk->map[pageind];
 | |
| 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
 | |
| 	    pagesize_2pow)) {
 | |
| 		arena_run_t *run;
 | |
| 
 | |
| 		pageind -= mapelm->pos;
 | |
| 
 | |
| 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
 | |
| 		    pagesize_2pow));
 | |
| 		assert(run->magic == ARENA_RUN_MAGIC);
 | |
| 		ret = run->bin->reg_size;
 | |
| 	} else
 | |
| 		ret = mapelm->npages << pagesize_2pow;
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| arena_ralloc(void *ptr, size_t size, size_t oldsize)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	/* Avoid moving the allocation if the size class would not change. */
 | |
| 	if (size < small_min) {
 | |
| 		if (oldsize < small_min &&
 | |
| 		    ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
 | |
| 		    == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
 | |
| 			goto IN_PLACE;
 | |
| 	} else if (size <= small_max) {
 | |
| 		if (oldsize >= small_min && oldsize <= small_max &&
 | |
| 		    (QUANTUM_CEILING(size) >> opt_quantum_2pow)
 | |
| 		    == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
 | |
| 			goto IN_PLACE;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We make no attempt to resize runs here, though it would be
 | |
| 		 * possible to do so.
 | |
| 		 */
 | |
| 		if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
 | |
| 			goto IN_PLACE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we get here, then size and oldsize are different enough that we
 | |
| 	 * need to use a different size class.  In that case, fall back to
 | |
| 	 * allocating new space and copying.
 | |
| 	 */
 | |
| 	ret = arena_malloc(choose_arena(), size);
 | |
| 	if (ret == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	/* Junk/zero-filling were already done by arena_malloc(). */
 | |
| 	if (size < oldsize)
 | |
| 		memcpy(ret, ptr, size);
 | |
| 	else
 | |
| 		memcpy(ret, ptr, oldsize);
 | |
| 	idalloc(ptr);
 | |
| 	return (ret);
 | |
| IN_PLACE:
 | |
| 	if (opt_junk && size < oldsize)
 | |
| 		memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
 | |
| 	else if (opt_zero && size > oldsize)
 | |
| 		memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
 | |
| 	return (ptr);
 | |
| }
 | |
| 
 | |
| static void
 | |
| arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
 | |
| {
 | |
| 	unsigned pageind;
 | |
| 	arena_chunk_map_t *mapelm;
 | |
| 	size_t size;
 | |
| 
 | |
| 	assert(arena != NULL);
 | |
| 	assert(arena->magic == ARENA_MAGIC);
 | |
| 	assert(chunk->arena == arena);
 | |
| 	assert(ptr != NULL);
 | |
| 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
 | |
| 
 | |
| 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
 | |
| 	    pagesize_2pow);
 | |
| 	mapelm = &chunk->map[pageind];
 | |
| 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
 | |
| 	    pagesize_2pow)) {
 | |
| 		arena_run_t *run;
 | |
| 		arena_bin_t *bin;
 | |
| 
 | |
| 		/* Small allocation. */
 | |
| 
 | |
| 		pageind -= mapelm->pos;
 | |
| 
 | |
| 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
 | |
| 		    pagesize_2pow));
 | |
| 		assert(run->magic == ARENA_RUN_MAGIC);
 | |
| 		bin = run->bin;
 | |
| 		size = bin->reg_size;
 | |
| 
 | |
| 		if (opt_junk)
 | |
| 			memset(ptr, 0x5a, size);
 | |
| 
 | |
| 		malloc_mutex_lock(&arena->mtx);
 | |
| 		arena_run_reg_dalloc(run, bin, ptr, size);
 | |
| 		run->nfree++;
 | |
| 
 | |
| 		if (run->nfree == bin->nregs) {
 | |
| 			/* Deallocate run. */
 | |
| 			if (run == bin->runcur)
 | |
| 				bin->runcur = NULL;
 | |
| 			else if (bin->nregs != 1) {
 | |
| 				/*
 | |
| 				 * This block's conditional is necessary because
 | |
| 				 * if the run only contains one region, then it
 | |
| 				 * never gets inserted into the non-full runs
 | |
| 				 * tree.
 | |
| 				 */
 | |
| 				/* LINTED */
 | |
| 				RB_REMOVE(arena_run_tree_s, &bin->runs, run);
 | |
| 			}
 | |
| #ifdef MALLOC_DEBUG
 | |
| 			run->magic = 0;
 | |
| #endif
 | |
| 			arena_run_dalloc(arena, run, bin->run_size);
 | |
| #ifdef MALLOC_STATS
 | |
| 			bin->stats.curruns--;
 | |
| #endif
 | |
| 		} else if (run->nfree == 1 && run != bin->runcur) {
 | |
| 			/*
 | |
| 			 * Make sure that bin->runcur always refers to the
 | |
| 			 * lowest non-full run, if one exists.
 | |
| 			 */
 | |
| 			if (bin->runcur == NULL)
 | |
| 				bin->runcur = run;
 | |
| 			else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
 | |
| 				/* Switch runcur. */
 | |
| 				if (bin->runcur->nfree > 0) {
 | |
| 					/* Insert runcur. */
 | |
| 					/* LINTED */
 | |
| 					RB_INSERT(arena_run_tree_s, &bin->runs,
 | |
| 					    bin->runcur);
 | |
| 				}
 | |
| 				bin->runcur = run;
 | |
| 			} else {
 | |
| 				/* LINTED */
 | |
| 				RB_INSERT(arena_run_tree_s, &bin->runs, run);
 | |
| 			}
 | |
| 		}
 | |
| #ifdef MALLOC_STATS
 | |
| 		arena->stats.allocated_small -= size;
 | |
| 		arena->stats.ndalloc_small++;
 | |
| #endif
 | |
| 	} else {
 | |
| 		/* Large allocation. */
 | |
| 
 | |
| 		size = mapelm->npages << pagesize_2pow;
 | |
| 		assert((((uintptr_t)ptr) & pagesize_mask) == 0);
 | |
| 
 | |
| 		if (opt_junk)
 | |
| 			memset(ptr, 0x5a, size);
 | |
| 
 | |
| 		malloc_mutex_lock(&arena->mtx);
 | |
| 		arena_run_dalloc(arena, (arena_run_t *)ptr, size);
 | |
| #ifdef MALLOC_STATS
 | |
| 		arena->stats.allocated_large -= size;
 | |
| 		arena->stats.ndalloc_large++;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	malloc_mutex_unlock(&arena->mtx);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| arena_new(arena_t *arena)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	arena_bin_t *bin;
 | |
| 	size_t prev_run_size;
 | |
| 
 | |
| 	malloc_mutex_init(&arena->mtx);
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 	memset(&arena->stats, 0, sizeof(arena_stats_t));
 | |
| #endif
 | |
| 
 | |
| 	/* Initialize chunks. */
 | |
| 	RB_INIT(&arena->chunks);
 | |
| 	arena->spare = NULL;
 | |
| 
 | |
| 	/* Initialize bins. */
 | |
| 	prev_run_size = pagesize;
 | |
| 
 | |
| 	/* (2^n)-spaced tiny bins. */
 | |
| 	for (i = 0; i < ntbins; i++) {
 | |
| 		bin = &arena->bins[i];
 | |
| 		bin->runcur = NULL;
 | |
| 		RB_INIT(&bin->runs);
 | |
| 
 | |
| 		bin->reg_size = (1 << (TINY_MIN_2POW + i));
 | |
| 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Quantum-spaced bins. */
 | |
| 	for (; i < ntbins + nqbins; i++) {
 | |
| 		bin = &arena->bins[i];
 | |
| 		bin->runcur = NULL;
 | |
| 		RB_INIT(&bin->runs);
 | |
| 
 | |
| 		bin->reg_size = quantum * (i - ntbins + 1);
 | |
| /*
 | |
| 		pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
 | |
| */
 | |
| 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* (2^n)-spaced sub-page bins. */
 | |
| 	for (; i < ntbins + nqbins + nsbins; i++) {
 | |
| 		bin = &arena->bins[i];
 | |
| 		bin->runcur = NULL;
 | |
| 		RB_INIT(&bin->runs);
 | |
| 
 | |
| 		bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
 | |
| 
 | |
| 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| #ifdef MALLOC_DEBUG
 | |
| 	arena->magic = ARENA_MAGIC;
 | |
| #endif
 | |
| 
 | |
| 	return (false);
 | |
| }
 | |
| 
 | |
| /* Create a new arena and insert it into the arenas array at index ind. */
 | |
| static arena_t *
 | |
| arenas_extend(unsigned ind)
 | |
| {
 | |
| 	arena_t *ret;
 | |
| 
 | |
| 	/* Allocate enough space for trailing bins. */
 | |
| 	ret = (arena_t *)base_alloc(sizeof(arena_t)
 | |
| 	    + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
 | |
| 	if (ret != NULL && arena_new(ret) == false) {
 | |
| 		arenas[ind] = ret;
 | |
| 		return (ret);
 | |
| 	}
 | |
| 	/* Only reached if there is an OOM error. */
 | |
| 
 | |
| 	/*
 | |
| 	 * OOM here is quite inconvenient to propagate, since dealing with it
 | |
| 	 * would require a check for failure in the fast path.  Instead, punt
 | |
| 	 * by using arenas[0].  In practice, this is an extremely unlikely
 | |
| 	 * failure.
 | |
| 	 */
 | |
| 	_malloc_message(getprogname(),
 | |
| 	    ": (malloc) Error initializing arena\n", "", "");
 | |
| 	if (opt_abort)
 | |
| 		abort();
 | |
| 
 | |
| 	return (arenas[0]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End arena.
 | |
|  */
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin general internal functions.
 | |
|  */
 | |
| 
 | |
| static void *
 | |
| huge_malloc(size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t csize;
 | |
| 	chunk_node_t *node;
 | |
| 
 | |
| 	/* Allocate one or more contiguous chunks for this request. */
 | |
| 
 | |
| 	csize = CHUNK_CEILING(size);
 | |
| 	if (csize == 0) {
 | |
| 		/* size is large enough to cause size_t wrap-around. */
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate a chunk node with which to track the chunk. */
 | |
| 	node = base_chunk_node_alloc();
 | |
| 	if (node == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	ret = chunk_alloc(csize);
 | |
| 	if (ret == NULL) {
 | |
| 		base_chunk_node_dealloc(node);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	/* Insert node into huge. */
 | |
| 	node->chunk = ret;
 | |
| 	node->size = csize;
 | |
| 
 | |
| 	malloc_mutex_lock(&chunks_mtx);
 | |
| 	RB_INSERT(chunk_tree_s, &huge, node);
 | |
| #ifdef MALLOC_STATS
 | |
| 	huge_nmalloc++;
 | |
| 	huge_allocated += csize;
 | |
| #endif
 | |
| 	malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 	if (opt_junk)
 | |
| 		memset(ret, 0xa5, csize);
 | |
| 	else if (opt_zero)
 | |
| 		memset(ret, 0, csize);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| /* Only handles large allocations that require more than chunk alignment. */
 | |
| static void *
 | |
| huge_palloc(size_t alignment, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t alloc_size, chunk_size, offset;
 | |
| 	chunk_node_t *node;
 | |
| 
 | |
| 	/*
 | |
| 	 * This allocation requires alignment that is even larger than chunk
 | |
| 	 * alignment.  This means that huge_malloc() isn't good enough.
 | |
| 	 *
 | |
| 	 * Allocate almost twice as many chunks as are demanded by the size or
 | |
| 	 * alignment, in order to assure the alignment can be achieved, then
 | |
| 	 * unmap leading and trailing chunks.
 | |
| 	 */
 | |
| 	assert(alignment >= chunksize);
 | |
| 
 | |
| 	chunk_size = CHUNK_CEILING(size);
 | |
| 
 | |
| 	if (size >= alignment)
 | |
| 		alloc_size = chunk_size + alignment - chunksize;
 | |
| 	else
 | |
| 		alloc_size = (alignment << 1) - chunksize;
 | |
| 
 | |
| 	/* Allocate a chunk node with which to track the chunk. */
 | |
| 	node = base_chunk_node_alloc();
 | |
| 	if (node == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	ret = chunk_alloc(alloc_size);
 | |
| 	if (ret == NULL) {
 | |
| 		base_chunk_node_dealloc(node);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	offset = (uintptr_t)ret & (alignment - 1);
 | |
| 	assert((offset & chunksize_mask) == 0);
 | |
| 	assert(offset < alloc_size);
 | |
| 	if (offset == 0) {
 | |
| 		/* Trim trailing space. */
 | |
| 		chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
 | |
| 		    - chunk_size);
 | |
| 	} else {
 | |
| 		size_t trailsize;
 | |
| 
 | |
| 		/* Trim leading space. */
 | |
| 		chunk_dealloc(ret, alignment - offset);
 | |
| 
 | |
| 		ret = (void *)((uintptr_t)ret + (alignment - offset));
 | |
| 
 | |
| 		trailsize = alloc_size - (alignment - offset) - chunk_size;
 | |
| 		if (trailsize != 0) {
 | |
| 		    /* Trim trailing space. */
 | |
| 		    assert(trailsize < alloc_size);
 | |
| 		    chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
 | |
| 			trailsize);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Insert node into huge. */
 | |
| 	node->chunk = ret;
 | |
| 	node->size = chunk_size;
 | |
| 
 | |
| 	malloc_mutex_lock(&chunks_mtx);
 | |
| 	RB_INSERT(chunk_tree_s, &huge, node);
 | |
| #ifdef MALLOC_STATS
 | |
| 	huge_nmalloc++;
 | |
| 	huge_allocated += chunk_size;
 | |
| #endif
 | |
| 	malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 	if (opt_junk)
 | |
| 		memset(ret, 0xa5, chunk_size);
 | |
| 	else if (opt_zero)
 | |
| 		memset(ret, 0, chunk_size);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| huge_ralloc(void *ptr, size_t size, size_t oldsize)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	/* Avoid moving the allocation if the size class would not change. */
 | |
| 	if (oldsize > arena_maxclass &&
 | |
| 	    CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
 | |
| 		if (opt_junk && size < oldsize) {
 | |
| 			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
 | |
| 			    - size);
 | |
| 		} else if (opt_zero && size > oldsize) {
 | |
| 			memset((void *)((uintptr_t)ptr + oldsize), 0, size
 | |
| 			    - oldsize);
 | |
| 		}
 | |
| 		return (ptr);
 | |
| 	}
 | |
| 
 | |
| 	if (CHUNK_ADDR2BASE(ptr) == ptr
 | |
| #ifdef USE_BRK
 | |
| 	    && ((uintptr_t)ptr < (uintptr_t)brk_base
 | |
| 	    || (uintptr_t)ptr >= (uintptr_t)brk_max)
 | |
| #endif
 | |
| 	    ) {
 | |
| 		chunk_node_t *node, key;
 | |
| 		void *newptr;
 | |
| 		size_t oldcsize;
 | |
| 		size_t newcsize;
 | |
| 
 | |
| 		newcsize = CHUNK_CEILING(size);
 | |
| 		oldcsize = CHUNK_CEILING(oldsize);
 | |
| 		assert(oldcsize != newcsize);
 | |
| 		if (newcsize == 0) {
 | |
| 			/* size_t wrap-around */
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Remove the old region from the tree now.  If mremap()
 | |
| 		 * returns the region to the system, other thread may
 | |
| 		 * map it for same huge allocation and insert it to the
 | |
| 		 * tree before we acquire the mutex lock again.
 | |
| 		 */
 | |
| 		malloc_mutex_lock(&chunks_mtx);
 | |
| 		key.chunk = __DECONST(void *, ptr);
 | |
| 		/* LINTED */
 | |
| 		node = RB_FIND(chunk_tree_s, &huge, &key);
 | |
| 		assert(node != NULL);
 | |
| 		assert(node->chunk == ptr);
 | |
| 		assert(node->size == oldcsize);
 | |
| 		RB_REMOVE(chunk_tree_s, &huge, node);
 | |
| 		malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 		newptr = mremap(ptr, oldcsize, NULL, newcsize,
 | |
| 		    MAP_ALIGNED(chunksize_2pow));
 | |
| 		if (newptr == MAP_FAILED) {
 | |
| 			/* We still own the old region. */
 | |
| 			malloc_mutex_lock(&chunks_mtx);
 | |
| 			RB_INSERT(chunk_tree_s, &huge, node);
 | |
| 			malloc_mutex_unlock(&chunks_mtx);
 | |
| 		} else {
 | |
| 			assert(CHUNK_ADDR2BASE(newptr) == newptr);
 | |
| 
 | |
| 			/* Insert new or resized old region. */
 | |
| 			malloc_mutex_lock(&chunks_mtx);
 | |
| 			node->size = newcsize;
 | |
| 			node->chunk = newptr;
 | |
| 			RB_INSERT(chunk_tree_s, &huge, node);
 | |
| #ifdef MALLOC_STATS
 | |
| 			huge_nralloc++;
 | |
| 			huge_allocated += newcsize - oldcsize;
 | |
| 			if (newcsize > oldcsize) {
 | |
| 				stats_chunks.curchunks +=
 | |
| 				    (newcsize - oldcsize) / chunksize;
 | |
| 				if (stats_chunks.curchunks >
 | |
| 				    stats_chunks.highchunks)
 | |
| 					stats_chunks.highchunks =
 | |
| 					    stats_chunks.curchunks;
 | |
| 			} else {
 | |
| 				stats_chunks.curchunks -=
 | |
| 				    (oldcsize - newcsize) / chunksize;
 | |
| 			}
 | |
| #endif
 | |
| 			malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 			if (opt_junk && size < oldsize) {
 | |
| 				memset((void *)((uintptr_t)newptr + size), 0x5a,
 | |
| 				    newcsize - size);
 | |
| 			} else if (opt_zero && size > oldsize) {
 | |
| 				memset((void *)((uintptr_t)newptr + oldsize), 0,
 | |
| 				    size - oldsize);
 | |
| 			}
 | |
| 			return (newptr);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we get here, then size and oldsize are different enough that we
 | |
| 	 * need to use a different size class.  In that case, fall back to
 | |
| 	 * allocating new space and copying.
 | |
| 	 */
 | |
| 	ret = huge_malloc(size);
 | |
| 	if (ret == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	if (CHUNK_ADDR2BASE(ptr) == ptr) {
 | |
| 		/* The old allocation is a chunk. */
 | |
| 		if (size < oldsize)
 | |
| 			memcpy(ret, ptr, size);
 | |
| 		else
 | |
| 			memcpy(ret, ptr, oldsize);
 | |
| 	} else {
 | |
| 		/* The old allocation is a region. */
 | |
| 		assert(oldsize < size);
 | |
| 		memcpy(ret, ptr, oldsize);
 | |
| 	}
 | |
| 	idalloc(ptr);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void
 | |
| huge_dalloc(void *ptr)
 | |
| {
 | |
| 	chunk_node_t key;
 | |
| 	chunk_node_t *node;
 | |
| 
 | |
| 	malloc_mutex_lock(&chunks_mtx);
 | |
| 
 | |
| 	/* Extract from tree of huge allocations. */
 | |
| 	key.chunk = ptr;
 | |
| 	/* LINTED */
 | |
| 	node = RB_FIND(chunk_tree_s, &huge, &key);
 | |
| 	assert(node != NULL);
 | |
| 	assert(node->chunk == ptr);
 | |
| 	/* LINTED */
 | |
| 	RB_REMOVE(chunk_tree_s, &huge, node);
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 	huge_ndalloc++;
 | |
| 	huge_allocated -= node->size;
 | |
| #endif
 | |
| 
 | |
| 	malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 	/* Unmap chunk. */
 | |
| #ifdef USE_BRK
 | |
| 	if (opt_junk)
 | |
| 		memset(node->chunk, 0x5a, node->size);
 | |
| #endif
 | |
| 	chunk_dealloc(node->chunk, node->size);
 | |
| 
 | |
| 	base_chunk_node_dealloc(node);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| imalloc(size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	assert(size != 0);
 | |
| 
 | |
| 	if (size <= arena_maxclass)
 | |
| 		ret = arena_malloc(choose_arena(), size);
 | |
| 	else
 | |
| 		ret = huge_malloc(size);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| ipalloc(size_t alignment, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t ceil_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round size up to the nearest multiple of alignment.
 | |
| 	 *
 | |
| 	 * This done, we can take advantage of the fact that for each small
 | |
| 	 * size class, every object is aligned at the smallest power of two
 | |
| 	 * that is non-zero in the base two representation of the size.  For
 | |
| 	 * example:
 | |
| 	 *
 | |
| 	 *   Size |   Base 2 | Minimum alignment
 | |
| 	 *   -----+----------+------------------
 | |
| 	 *     96 |  1100000 |  32
 | |
| 	 *    144 | 10100000 |  32
 | |
| 	 *    192 | 11000000 |  64
 | |
| 	 *
 | |
| 	 * Depending on runtime settings, it is possible that arena_malloc()
 | |
| 	 * will further round up to a power of two, but that never causes
 | |
| 	 * correctness issues.
 | |
| 	 */
 | |
| 	ceil_size = (size + (alignment - 1)) & (-alignment);
 | |
| 	/*
 | |
| 	 * (ceil_size < size) protects against the combination of maximal
 | |
| 	 * alignment and size greater than maximal alignment.
 | |
| 	 */
 | |
| 	if (ceil_size < size) {
 | |
| 		/* size_t overflow. */
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	if (ceil_size <= pagesize || (alignment <= pagesize
 | |
| 	    && ceil_size <= arena_maxclass))
 | |
| 		ret = arena_malloc(choose_arena(), ceil_size);
 | |
| 	else {
 | |
| 		size_t run_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * We can't achieve sub-page alignment, so round up alignment
 | |
| 		 * permanently; it makes later calculations simpler.
 | |
| 		 */
 | |
| 		alignment = PAGE_CEILING(alignment);
 | |
| 		ceil_size = PAGE_CEILING(size);
 | |
| 		/*
 | |
| 		 * (ceil_size < size) protects against very large sizes within
 | |
| 		 * pagesize of SIZE_T_MAX.
 | |
| 		 *
 | |
| 		 * (ceil_size + alignment < ceil_size) protects against the
 | |
| 		 * combination of maximal alignment and ceil_size large enough
 | |
| 		 * to cause overflow.  This is similar to the first overflow
 | |
| 		 * check above, but it needs to be repeated due to the new
 | |
| 		 * ceil_size value, which may now be *equal* to maximal
 | |
| 		 * alignment, whereas before we only detected overflow if the
 | |
| 		 * original size was *greater* than maximal alignment.
 | |
| 		 */
 | |
| 		if (ceil_size < size || ceil_size + alignment < ceil_size) {
 | |
| 			/* size_t overflow. */
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Calculate the size of the over-size run that arena_palloc()
 | |
| 		 * would need to allocate in order to guarantee the alignment.
 | |
| 		 */
 | |
| 		if (ceil_size >= alignment)
 | |
| 			run_size = ceil_size + alignment - pagesize;
 | |
| 		else {
 | |
| 			/*
 | |
| 			 * It is possible that (alignment << 1) will cause
 | |
| 			 * overflow, but it doesn't matter because we also
 | |
| 			 * subtract pagesize, which in the case of overflow
 | |
| 			 * leaves us with a very large run_size.  That causes
 | |
| 			 * the first conditional below to fail, which means
 | |
| 			 * that the bogus run_size value never gets used for
 | |
| 			 * anything important.
 | |
| 			 */
 | |
| 			run_size = (alignment << 1) - pagesize;
 | |
| 		}
 | |
| 
 | |
| 		if (run_size <= arena_maxclass) {
 | |
| 			ret = arena_palloc(choose_arena(), alignment, ceil_size,
 | |
| 			    run_size);
 | |
| 		} else if (alignment <= chunksize)
 | |
| 			ret = huge_malloc(ceil_size);
 | |
| 		else
 | |
| 			ret = huge_palloc(alignment, ceil_size);
 | |
| 	}
 | |
| 
 | |
| 	assert(((uintptr_t)ret & (alignment - 1)) == 0);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| icalloc(size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (size <= arena_maxclass) {
 | |
| 		ret = arena_malloc(choose_arena(), size);
 | |
| 		if (ret == NULL)
 | |
| 			return (NULL);
 | |
| 		memset(ret, 0, size);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The virtual memory system provides zero-filled pages, so
 | |
| 		 * there is no need to do so manually, unless opt_junk is
 | |
| 		 * enabled, in which case huge_malloc() fills huge allocations
 | |
| 		 * with junk.
 | |
| 		 */
 | |
| 		ret = huge_malloc(size);
 | |
| 		if (ret == NULL)
 | |
| 			return (NULL);
 | |
| 
 | |
| 		if (opt_junk)
 | |
| 			memset(ret, 0, size);
 | |
| #ifdef USE_BRK
 | |
| 		else if ((uintptr_t)ret >= (uintptr_t)brk_base
 | |
| 		    && (uintptr_t)ret < (uintptr_t)brk_max) {
 | |
| 			/*
 | |
| 			 * This may be a re-used brk chunk.  Therefore, zero
 | |
| 			 * the memory.
 | |
| 			 */
 | |
| 			memset(ret, 0, size);
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| isalloc(const void *ptr)
 | |
| {
 | |
| 	size_t ret;
 | |
| 	arena_chunk_t *chunk;
 | |
| 
 | |
| 	assert(ptr != NULL);
 | |
| 
 | |
| 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
 | |
| 	if (chunk != ptr) {
 | |
| 		/* Region. */
 | |
| 		assert(chunk->arena->magic == ARENA_MAGIC);
 | |
| 
 | |
| 		ret = arena_salloc(ptr);
 | |
| 	} else {
 | |
| 		chunk_node_t *node, key;
 | |
| 
 | |
| 		/* Chunk (huge allocation). */
 | |
| 
 | |
| 		malloc_mutex_lock(&chunks_mtx);
 | |
| 
 | |
| 		/* Extract from tree of huge allocations. */
 | |
| 		key.chunk = __DECONST(void *, ptr);
 | |
| 		/* LINTED */
 | |
| 		node = RB_FIND(chunk_tree_s, &huge, &key);
 | |
| 		assert(node != NULL);
 | |
| 
 | |
| 		ret = node->size;
 | |
| 
 | |
| 		malloc_mutex_unlock(&chunks_mtx);
 | |
| 	}
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void *
 | |
| iralloc(void *ptr, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t oldsize;
 | |
| 
 | |
| 	assert(ptr != NULL);
 | |
| 	assert(size != 0);
 | |
| 
 | |
| 	oldsize = isalloc(ptr);
 | |
| 
 | |
| 	if (size <= arena_maxclass)
 | |
| 		ret = arena_ralloc(ptr, size, oldsize);
 | |
| 	else
 | |
| 		ret = huge_ralloc(ptr, size, oldsize);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| static void
 | |
| idalloc(void *ptr)
 | |
| {
 | |
| 	arena_chunk_t *chunk;
 | |
| 
 | |
| 	assert(ptr != NULL);
 | |
| 
 | |
| 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
 | |
| 	if (chunk != ptr) {
 | |
| 		/* Region. */
 | |
| 		arena_dalloc(chunk->arena, chunk, ptr);
 | |
| 	} else
 | |
| 		huge_dalloc(ptr);
 | |
| }
 | |
| 
 | |
| static void
 | |
| malloc_print_stats(void)
 | |
| {
 | |
| 
 | |
| 	if (opt_print_stats) {
 | |
| 		char s[UMAX2S_BUFSIZE];
 | |
| 		_malloc_message("___ Begin malloc statistics ___\n", "", "",
 | |
| 		    "");
 | |
| 		_malloc_message("Assertions ",
 | |
| #ifdef NDEBUG
 | |
| 		    "disabled",
 | |
| #else
 | |
| 		    "enabled",
 | |
| #endif
 | |
| 		    "\n", "");
 | |
| 		_malloc_message("Boolean MALLOC_OPTIONS: ",
 | |
| 		    opt_abort ? "A" : "a",
 | |
| 		    opt_junk ? "J" : "j",
 | |
| 		    opt_hint ? "H" : "h");
 | |
| 		_malloc_message(opt_utrace ? "PU" : "Pu",
 | |
| 		    opt_sysv ? "V" : "v",
 | |
| 		    opt_xmalloc ? "X" : "x",
 | |
| 		    opt_zero ? "Z\n" : "z\n");
 | |
| 
 | |
| 		_malloc_message("CPUs: ", size_t2s(ncpus, s), "\n", "");
 | |
| 		_malloc_message("Max arenas: ", size_t2s(narenas, s), "\n", "");
 | |
| 		_malloc_message("Pointer size: ", size_t2s(sizeof(void *), s),
 | |
| 		    "\n", "");
 | |
| 		_malloc_message("Quantum size: ", size_t2s(quantum, s), "\n", "");
 | |
| 		_malloc_message("Max small size: ", size_t2s(small_max, s), "\n",
 | |
| 		    "");
 | |
| 
 | |
| 		_malloc_message("Chunk size: ", size_t2s(chunksize, s), "", "");
 | |
| 		_malloc_message(" (2^", size_t2s((size_t)opt_chunk_2pow, s),
 | |
| 		    ")\n", "");
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 		{
 | |
| 			size_t allocated, mapped;
 | |
| 			unsigned i;
 | |
| 			arena_t *arena;
 | |
| 
 | |
| 			/* Calculate and print allocated/mapped stats. */
 | |
| 
 | |
| 			/* arenas. */
 | |
| 			for (i = 0, allocated = 0; i < narenas; i++) {
 | |
| 				if (arenas[i] != NULL) {
 | |
| 					malloc_mutex_lock(&arenas[i]->mtx);
 | |
| 					allocated +=
 | |
| 					    arenas[i]->stats.allocated_small;
 | |
| 					allocated +=
 | |
| 					    arenas[i]->stats.allocated_large;
 | |
| 					malloc_mutex_unlock(&arenas[i]->mtx);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* huge/base. */
 | |
| 			malloc_mutex_lock(&chunks_mtx);
 | |
| 			allocated += huge_allocated;
 | |
| 			mapped = stats_chunks.curchunks * chunksize;
 | |
| 			malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 			malloc_mutex_lock(&base_mtx);
 | |
| 			mapped += base_mapped;
 | |
| 			malloc_mutex_unlock(&base_mtx);
 | |
| 
 | |
| 			malloc_printf("Allocated: %zu, mapped: %zu\n",
 | |
| 			    allocated, mapped);
 | |
| 
 | |
| 			/* Print chunk stats. */
 | |
| 			{
 | |
| 				chunk_stats_t chunks_stats;
 | |
| 
 | |
| 				malloc_mutex_lock(&chunks_mtx);
 | |
| 				chunks_stats = stats_chunks;
 | |
| 				malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 				malloc_printf("chunks: nchunks   "
 | |
| 				    "highchunks    curchunks\n");
 | |
| 				malloc_printf("  %13llu%13lu%13lu\n",
 | |
| 				    chunks_stats.nchunks,
 | |
| 				    chunks_stats.highchunks,
 | |
| 				    chunks_stats.curchunks);
 | |
| 			}
 | |
| 
 | |
| 			/* Print chunk stats. */
 | |
| 			malloc_printf(
 | |
| 			    "huge: nmalloc      ndalloc      "
 | |
| 			    "nralloc    allocated\n");
 | |
| 			malloc_printf(" %12llu %12llu %12llu %12zu\n",
 | |
| 			    huge_nmalloc, huge_ndalloc, huge_nralloc,
 | |
| 			    huge_allocated);
 | |
| 
 | |
| 			/* Print stats for each arena. */
 | |
| 			for (i = 0; i < narenas; i++) {
 | |
| 				arena = arenas[i];
 | |
| 				if (arena != NULL) {
 | |
| 					malloc_printf(
 | |
| 					    "\narenas[%u] @ %p\n", i, arena);
 | |
| 					malloc_mutex_lock(&arena->mtx);
 | |
| 					stats_print(arena);
 | |
| 					malloc_mutex_unlock(&arena->mtx);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif /* #ifdef MALLOC_STATS */
 | |
| 		_malloc_message("--- End malloc statistics ---\n", "", "", "");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FreeBSD's pthreads implementation calls malloc(3), so the malloc
 | |
|  * implementation has to take pains to avoid infinite recursion during
 | |
|  * initialization.
 | |
|  */
 | |
| static inline bool
 | |
| malloc_init(void)
 | |
| {
 | |
| 
 | |
| 	if (malloc_initialized == false)
 | |
| 		return (malloc_init_hard());
 | |
| 
 | |
| 	return (false);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| malloc_init_hard(void)
 | |
| {
 | |
| 	unsigned i, j;
 | |
| 	ssize_t linklen;
 | |
| 	char buf[PATH_MAX + 1];
 | |
| 	const char *opts = "";
 | |
| 	int serrno;
 | |
| 
 | |
| 	malloc_mutex_lock(&init_lock);
 | |
| 	if (malloc_initialized) {
 | |
| 		/*
 | |
| 		 * Another thread initialized the allocator before this one
 | |
| 		 * acquired init_lock.
 | |
| 		 */
 | |
| 		malloc_mutex_unlock(&init_lock);
 | |
| 		return (false);
 | |
| 	}
 | |
| 
 | |
| 	serrno = errno;
 | |
| 	/* Get number of CPUs. */
 | |
| 	{
 | |
| 		int mib[2];
 | |
| 		size_t len;
 | |
| 
 | |
| 		mib[0] = CTL_HW;
 | |
| 		mib[1] = HW_NCPU;
 | |
| 		len = sizeof(ncpus);
 | |
| 		if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
 | |
| 			/* Error. */
 | |
| 			ncpus = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Get page size. */
 | |
| 	{
 | |
| 		long result;
 | |
| 
 | |
| 		result = sysconf(_SC_PAGESIZE);
 | |
| 		assert(result != -1);
 | |
| 		pagesize = (unsigned) result;
 | |
| 
 | |
| 		/*
 | |
| 		 * We assume that pagesize is a power of 2 when calculating
 | |
| 		 * pagesize_mask and pagesize_2pow.
 | |
| 		 */
 | |
| 		assert(((result - 1) & result) == 0);
 | |
| 		pagesize_mask = result - 1;
 | |
| 		pagesize_2pow = ffs((int)result) - 1;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 3; i++) {
 | |
| 		/* Get runtime configuration. */
 | |
| 		switch (i) {
 | |
| 		case 0:
 | |
| 			if ((linklen = readlink("/etc/malloc.conf", buf,
 | |
| 						sizeof(buf) - 1)) != -1) {
 | |
| 				/*
 | |
| 				 * Use the contents of the "/etc/malloc.conf"
 | |
| 				 * symbolic link's name.
 | |
| 				 */
 | |
| 				buf[linklen] = '\0';
 | |
| 				opts = buf;
 | |
| 			} else {
 | |
| 				/* No configuration specified. */
 | |
| 				buf[0] = '\0';
 | |
| 				opts = buf;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
 | |
| 			    issetugid() == 0) {
 | |
| 				/*
 | |
| 				 * Do nothing; opts is already initialized to
 | |
| 				 * the value of the MALLOC_OPTIONS environment
 | |
| 				 * variable.
 | |
| 				 */
 | |
| 			} else {
 | |
| 				/* No configuration specified. */
 | |
| 				buf[0] = '\0';
 | |
| 				opts = buf;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			if (_malloc_options != NULL) {
 | |
| 			    /*
 | |
| 			     * Use options that were compiled into the program.
 | |
| 			     */
 | |
| 			    opts = _malloc_options;
 | |
| 			} else {
 | |
| 				/* No configuration specified. */
 | |
| 				buf[0] = '\0';
 | |
| 				opts = buf;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* NOTREACHED */
 | |
| 			/* LINTED */
 | |
| 			assert(false);
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; opts[j] != '\0'; j++) {
 | |
| 			switch (opts[j]) {
 | |
| 			case 'a':
 | |
| 				opt_abort = false;
 | |
| 				break;
 | |
| 			case 'A':
 | |
| 				opt_abort = true;
 | |
| 				break;
 | |
| 			case 'h':
 | |
| 				opt_hint = false;
 | |
| 				break;
 | |
| 			case 'H':
 | |
| 				opt_hint = true;
 | |
| 				break;
 | |
| 			case 'j':
 | |
| 				opt_junk = false;
 | |
| 				break;
 | |
| 			case 'J':
 | |
| 				opt_junk = true;
 | |
| 				break;
 | |
| 			case 'k':
 | |
| 				/*
 | |
| 				 * Chunks always require at least one header
 | |
| 				 * page, so chunks can never be smaller than
 | |
| 				 * two pages.
 | |
| 				 */
 | |
| 				if (opt_chunk_2pow > pagesize_2pow + 1)
 | |
| 					opt_chunk_2pow--;
 | |
| 				break;
 | |
| 			case 'K':
 | |
| 				if (opt_chunk_2pow + 1 <
 | |
| 				    (int)(sizeof(size_t) << 3))
 | |
| 					opt_chunk_2pow++;
 | |
| 				break;
 | |
| 			case 'n':
 | |
| 				opt_narenas_lshift--;
 | |
| 				break;
 | |
| 			case 'N':
 | |
| 				opt_narenas_lshift++;
 | |
| 				break;
 | |
| 			case 'p':
 | |
| 				opt_print_stats = false;
 | |
| 				break;
 | |
| 			case 'P':
 | |
| 				opt_print_stats = true;
 | |
| 				break;
 | |
| 			case 'q':
 | |
| 				if (opt_quantum_2pow > QUANTUM_2POW_MIN)
 | |
| 					opt_quantum_2pow--;
 | |
| 				break;
 | |
| 			case 'Q':
 | |
| 				if (opt_quantum_2pow < pagesize_2pow - 1)
 | |
| 					opt_quantum_2pow++;
 | |
| 				break;
 | |
| 			case 's':
 | |
| 				if (opt_small_max_2pow > QUANTUM_2POW_MIN)
 | |
| 					opt_small_max_2pow--;
 | |
| 				break;
 | |
| 			case 'S':
 | |
| 				if (opt_small_max_2pow < pagesize_2pow - 1)
 | |
| 					opt_small_max_2pow++;
 | |
| 				break;
 | |
| 			case 'u':
 | |
| 				opt_utrace = false;
 | |
| 				break;
 | |
| 			case 'U':
 | |
| 				opt_utrace = true;
 | |
| 				break;
 | |
| 			case 'v':
 | |
| 				opt_sysv = false;
 | |
| 				break;
 | |
| 			case 'V':
 | |
| 				opt_sysv = true;
 | |
| 				break;
 | |
| 			case 'x':
 | |
| 				opt_xmalloc = false;
 | |
| 				break;
 | |
| 			case 'X':
 | |
| 				opt_xmalloc = true;
 | |
| 				break;
 | |
| 			case 'z':
 | |
| 				opt_zero = false;
 | |
| 				break;
 | |
| 			case 'Z':
 | |
| 				opt_zero = true;
 | |
| 				break;
 | |
| 			default: {
 | |
| 				char cbuf[2];
 | |
| 				
 | |
| 				cbuf[0] = opts[j];
 | |
| 				cbuf[1] = '\0';
 | |
| 				_malloc_message(getprogname(),
 | |
| 				    ": (malloc) Unsupported character in "
 | |
| 				    "malloc options: '", cbuf, "'\n");
 | |
| 			}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	errno = serrno;
 | |
| 
 | |
| 	/* Take care to call atexit() only once. */
 | |
| 	if (opt_print_stats) {
 | |
| 		/* Print statistics at exit. */
 | |
| 		atexit(malloc_print_stats);
 | |
| 	}
 | |
| 
 | |
| 	/* Set variables according to the value of opt_small_max_2pow. */
 | |
| 	if (opt_small_max_2pow < opt_quantum_2pow)
 | |
| 		opt_small_max_2pow = opt_quantum_2pow;
 | |
| 	small_max = (1 << opt_small_max_2pow);
 | |
| 
 | |
| 	/* Set bin-related variables. */
 | |
| 	bin_maxclass = (pagesize >> 1);
 | |
| 	assert(opt_quantum_2pow >= TINY_MIN_2POW);
 | |
| 	ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
 | |
| 	assert(ntbins <= opt_quantum_2pow);
 | |
| 	nqbins = (unsigned)(small_max >> opt_quantum_2pow);
 | |
| 	nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
 | |
| 
 | |
| 	/* Set variables according to the value of opt_quantum_2pow. */
 | |
| 	quantum = (1 << opt_quantum_2pow);
 | |
| 	quantum_mask = quantum - 1;
 | |
| 	if (ntbins > 0)
 | |
| 		small_min = (quantum >> 1) + 1;
 | |
| 	else
 | |
| 		small_min = 1;
 | |
| 	assert(small_min <= quantum);
 | |
| 
 | |
| 	/* Set variables according to the value of opt_chunk_2pow. */
 | |
| 	chunksize = (1LU << opt_chunk_2pow);
 | |
| 	chunksize_mask = chunksize - 1;
 | |
| 	chunksize_2pow = (unsigned)opt_chunk_2pow;
 | |
| 	chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
 | |
| 	{
 | |
| 		unsigned header_size;
 | |
| 
 | |
| 		header_size = (unsigned)(sizeof(arena_chunk_t) +
 | |
| 		    (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
 | |
| 		arena_chunk_header_npages = (header_size >> pagesize_2pow);
 | |
| 		if ((header_size & pagesize_mask) != 0)
 | |
| 			arena_chunk_header_npages++;
 | |
| 	}
 | |
| 	arena_maxclass = chunksize - (arena_chunk_header_npages <<
 | |
| 	    pagesize_2pow);
 | |
| 
 | |
| 	UTRACE(0, 0, 0);
 | |
| 
 | |
| #ifdef MALLOC_STATS
 | |
| 	memset(&stats_chunks, 0, sizeof(chunk_stats_t));
 | |
| #endif
 | |
| 
 | |
| 	/* Various sanity checks that regard configuration. */
 | |
| 	assert(quantum >= sizeof(void *));
 | |
| 	assert(quantum <= pagesize);
 | |
| 	assert(chunksize >= pagesize);
 | |
| 	assert(quantum * 4 <= chunksize);
 | |
| 
 | |
| 	/* Initialize chunks data. */
 | |
| 	malloc_mutex_init(&chunks_mtx);
 | |
| 	RB_INIT(&huge);
 | |
| #ifdef USE_BRK
 | |
| 	malloc_mutex_init(&brk_mtx);
 | |
| 	brk_base = sbrk(0);
 | |
| 	brk_prev = brk_base;
 | |
| 	brk_max = brk_base;
 | |
| #endif
 | |
| #ifdef MALLOC_STATS
 | |
| 	huge_nmalloc = 0;
 | |
| 	huge_ndalloc = 0;
 | |
| 	huge_nralloc = 0;
 | |
| 	huge_allocated = 0;
 | |
| #endif
 | |
| 	RB_INIT(&old_chunks);
 | |
| 
 | |
| 	/* Initialize base allocation data structures. */
 | |
| #ifdef MALLOC_STATS
 | |
| 	base_mapped = 0;
 | |
| #endif
 | |
| #ifdef USE_BRK
 | |
| 	/*
 | |
| 	 * Allocate a base chunk here, since it doesn't actually have to be
 | |
| 	 * chunk-aligned.  Doing this before allocating any other chunks allows
 | |
| 	 * the use of space that would otherwise be wasted.
 | |
| 	 */
 | |
| 	base_pages_alloc(0);
 | |
| #endif
 | |
| 	base_chunk_nodes = NULL;
 | |
| 	malloc_mutex_init(&base_mtx);
 | |
| 
 | |
| 	if (ncpus > 1) {
 | |
| 		/*
 | |
| 		 * For SMP systems, create four times as many arenas as there
 | |
| 		 * are CPUs by default.
 | |
| 		 */
 | |
| 		opt_narenas_lshift += 2;
 | |
| 	}
 | |
| 
 | |
| #ifdef NO_TLS
 | |
| 	/* Initialize arena key. */
 | |
| 	(void)thr_keycreate(&arenas_map_key, NULL);
 | |
| #endif
 | |
| 
 | |
| 	/* Determine how many arenas to use. */
 | |
| 	narenas = ncpus;
 | |
| 	if (opt_narenas_lshift > 0) {
 | |
| 		if ((narenas << opt_narenas_lshift) > narenas)
 | |
| 			narenas <<= opt_narenas_lshift;
 | |
| 		/*
 | |
| 		 * Make sure not to exceed the limits of what base_malloc()
 | |
| 		 * can handle.
 | |
| 		 */
 | |
| 		if (narenas * sizeof(arena_t *) > chunksize)
 | |
| 			narenas = (unsigned)(chunksize / sizeof(arena_t *));
 | |
| 	} else if (opt_narenas_lshift < 0) {
 | |
| 		if ((narenas << opt_narenas_lshift) < narenas)
 | |
| 			narenas <<= opt_narenas_lshift;
 | |
| 		/* Make sure there is at least one arena. */
 | |
| 		if (narenas == 0)
 | |
| 			narenas = 1;
 | |
| 	}
 | |
| 
 | |
| 	next_arena = 0;
 | |
| 
 | |
| 	/* Allocate and initialize arenas. */
 | |
| 	arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
 | |
| 	if (arenas == NULL) {
 | |
| 		malloc_mutex_unlock(&init_lock);
 | |
| 		return (true);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Zero the array.  In practice, this should always be pre-zeroed,
 | |
| 	 * since it was just mmap()ed, but let's be sure.
 | |
| 	 */
 | |
| 	memset(arenas, 0, sizeof(arena_t *) * narenas);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize one arena here.  The rest are lazily created in
 | |
| 	 * arena_choose_hard().
 | |
| 	 */
 | |
| 	arenas_extend(0);
 | |
| 	if (arenas[0] == NULL) {
 | |
| 		malloc_mutex_unlock(&init_lock);
 | |
| 		return (true);
 | |
| 	}
 | |
| 
 | |
| 	malloc_mutex_init(&arenas_mtx);
 | |
| 
 | |
| 	malloc_initialized = true;
 | |
| 	malloc_mutex_unlock(&init_lock);
 | |
| 	return (false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End general internal functions.
 | |
|  */
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin malloc(3)-compatible functions.
 | |
|  */
 | |
| 
 | |
| void *
 | |
| malloc(size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (malloc_init()) {
 | |
| 		ret = NULL;
 | |
| 		goto RETURN;
 | |
| 	}
 | |
| 
 | |
| 	if (size == 0) {
 | |
| 		if (opt_sysv == false)
 | |
| 			size = 1;
 | |
| 		else {
 | |
| 			ret = NULL;
 | |
| 			goto RETURN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = imalloc(size);
 | |
| 
 | |
| RETURN:
 | |
| 	if (ret == NULL) {
 | |
| 		if (opt_xmalloc) {
 | |
| 			_malloc_message(getprogname(),
 | |
| 			    ": (malloc) Error in malloc(): out of memory\n", "",
 | |
| 			    "");
 | |
| 			abort();
 | |
| 		}
 | |
| 		errno = ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	UTRACE(0, size, ret);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| int
 | |
| posix_memalign(void **memptr, size_t alignment, size_t size)
 | |
| {
 | |
| 	int ret;
 | |
| 	void *result;
 | |
| 
 | |
| 	if (malloc_init())
 | |
| 		result = NULL;
 | |
| 	else {
 | |
| 		/* Make sure that alignment is a large enough power of 2. */
 | |
| 		if (((alignment - 1) & alignment) != 0
 | |
| 		    || alignment < sizeof(void *)) {
 | |
| 			if (opt_xmalloc) {
 | |
| 				_malloc_message(getprogname(),
 | |
| 				    ": (malloc) Error in posix_memalign(): "
 | |
| 				    "invalid alignment\n", "", "");
 | |
| 				abort();
 | |
| 			}
 | |
| 			result = NULL;
 | |
| 			ret = EINVAL;
 | |
| 			goto RETURN;
 | |
| 		}
 | |
| 
 | |
| 		result = ipalloc(alignment, size);
 | |
| 	}
 | |
| 
 | |
| 	if (result == NULL) {
 | |
| 		if (opt_xmalloc) {
 | |
| 			_malloc_message(getprogname(),
 | |
| 			": (malloc) Error in posix_memalign(): out of memory\n",
 | |
| 			"", "");
 | |
| 			abort();
 | |
| 		}
 | |
| 		ret = ENOMEM;
 | |
| 		goto RETURN;
 | |
| 	}
 | |
| 
 | |
| 	*memptr = result;
 | |
| 	ret = 0;
 | |
| 
 | |
| RETURN:
 | |
| 	UTRACE(0, size, result);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| void *
 | |
| calloc(size_t num, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t num_size;
 | |
| 
 | |
| 	if (malloc_init()) {
 | |
| 		num_size = 0;
 | |
| 		ret = NULL;
 | |
| 		goto RETURN;
 | |
| 	}
 | |
| 
 | |
| 	num_size = num * size;
 | |
| 	if (num_size == 0) {
 | |
| 		if ((opt_sysv == false) && ((num == 0) || (size == 0)))
 | |
| 			num_size = 1;
 | |
| 		else {
 | |
| 			ret = NULL;
 | |
| 			goto RETURN;
 | |
| 		}
 | |
| 	/*
 | |
| 	 * Try to avoid division here.  We know that it isn't possible to
 | |
| 	 * overflow during multiplication if neither operand uses any of the
 | |
| 	 * most significant half of the bits in a size_t.
 | |
| 	 */
 | |
| 	} else if ((unsigned long long)((num | size) &
 | |
| 	   ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
 | |
| 	   (num_size / size != num)) {
 | |
| 		/* size_t overflow. */
 | |
| 		ret = NULL;
 | |
| 		goto RETURN;
 | |
| 	}
 | |
| 
 | |
| 	ret = icalloc(num_size);
 | |
| 
 | |
| RETURN:
 | |
| 	if (ret == NULL) {
 | |
| 		if (opt_xmalloc) {
 | |
| 			_malloc_message(getprogname(),
 | |
| 			    ": (malloc) Error in calloc(): out of memory\n", "",
 | |
| 			    "");
 | |
| 			abort();
 | |
| 		}
 | |
| 		errno = ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	UTRACE(0, num_size, ret);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| void *
 | |
| realloc(void *ptr, size_t size)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (size == 0) {
 | |
| 		if (opt_sysv == false)
 | |
| 			size = 1;
 | |
| 		else {
 | |
| 			if (ptr != NULL)
 | |
| 				idalloc(ptr);
 | |
| 			ret = NULL;
 | |
| 			goto RETURN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ptr != NULL) {
 | |
| 		assert(malloc_initialized);
 | |
| 
 | |
| 		ret = iralloc(ptr, size);
 | |
| 
 | |
| 		if (ret == NULL) {
 | |
| 			if (opt_xmalloc) {
 | |
| 				_malloc_message(getprogname(),
 | |
| 				    ": (malloc) Error in realloc(): out of "
 | |
| 				    "memory\n", "", "");
 | |
| 				abort();
 | |
| 			}
 | |
| 			errno = ENOMEM;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (malloc_init())
 | |
| 			ret = NULL;
 | |
| 		else
 | |
| 			ret = imalloc(size);
 | |
| 
 | |
| 		if (ret == NULL) {
 | |
| 			if (opt_xmalloc) {
 | |
| 				_malloc_message(getprogname(),
 | |
| 				    ": (malloc) Error in realloc(): out of "
 | |
| 				    "memory\n", "", "");
 | |
| 				abort();
 | |
| 			}
 | |
| 			errno = ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| RETURN:
 | |
| 	UTRACE(ptr, size, ret);
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| void
 | |
| free(void *ptr)
 | |
| {
 | |
| 
 | |
| 	UTRACE(ptr, 0, 0);
 | |
| 	if (ptr != NULL) {
 | |
| 		assert(malloc_initialized);
 | |
| 
 | |
| 		idalloc(ptr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End malloc(3)-compatible functions.
 | |
|  */
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin non-standard functions.
 | |
|  */
 | |
| #ifndef __NetBSD__
 | |
| size_t
 | |
| malloc_usable_size(const void *ptr)
 | |
| {
 | |
| 
 | |
| 	assert(ptr != NULL);
 | |
| 
 | |
| 	return (isalloc(ptr));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * End non-standard functions.
 | |
|  */
 | |
| /******************************************************************************/
 | |
| /*
 | |
|  * Begin library-private functions, used by threading libraries for protection
 | |
|  * of malloc during fork().  These functions are only called if the program is
 | |
|  * running in threaded mode, so there is no need to check whether the program
 | |
|  * is threaded here.
 | |
|  */
 | |
| 
 | |
| void
 | |
| _malloc_prefork(void)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	/* Acquire all mutexes in a safe order. */
 | |
| 
 | |
| 	malloc_mutex_lock(&arenas_mtx);
 | |
| 	for (i = 0; i < narenas; i++) {
 | |
| 		if (arenas[i] != NULL)
 | |
| 			malloc_mutex_lock(&arenas[i]->mtx);
 | |
| 	}
 | |
| 	malloc_mutex_unlock(&arenas_mtx);
 | |
| 
 | |
| 	malloc_mutex_lock(&base_mtx);
 | |
| 
 | |
| 	malloc_mutex_lock(&chunks_mtx);
 | |
| }
 | |
| 
 | |
| void
 | |
| _malloc_postfork(void)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	/* Release all mutexes, now that fork() has completed. */
 | |
| 
 | |
| 	malloc_mutex_unlock(&chunks_mtx);
 | |
| 
 | |
| 	malloc_mutex_unlock(&base_mtx);
 | |
| 
 | |
| 	malloc_mutex_lock(&arenas_mtx);
 | |
| 	for (i = 0; i < narenas; i++) {
 | |
| 		if (arenas[i] != NULL)
 | |
| 			malloc_mutex_unlock(&arenas[i]->mtx);
 | |
| 	}
 | |
| 	malloc_mutex_unlock(&arenas_mtx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * End library-private functions.
 | |
|  */
 | |
| /******************************************************************************/
 |