266 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			266 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This file contains a device driver that can access the CMOS chip to 
 | |
|  * get or set the system time. It drives the special file:
 | |
|  *
 | |
|  *     /dev/cmos	- CMOS chip
 | |
|  *
 | |
|  * Changes:
 | |
|  *     Aug 04, 2005	Created. Read CMOS time.  (Jorrit N. Herder)
 | |
|  *
 | |
|  * Manufacturers usually use the ID value of the IBM model they emulate.
 | |
|  * However some manufacturers, notably HP and COMPAQ, have had different
 | |
|  * ideas in the past.
 | |
|  *
 | |
|  * Machine ID byte information source:
 | |
|  *	_The Programmer's PC Sourcebook_ by Thom Hogan,
 | |
|  *	published by Microsoft Press
 | |
|  */
 | |
| 
 | |
| #include "../drivers.h"
 | |
| #include <sys/ioc_cmos.h>
 | |
| #include <time.h>
 | |
| #include <ibm/cmos.h>
 | |
| #include <ibm/bios.h>
 | |
| 
 | |
| extern int errno;			/* error number for PM calls */
 | |
| 
 | |
| FORWARD _PROTOTYPE( int gettime, (int who, int y2kflag, vir_bytes dst_time));
 | |
| FORWARD _PROTOTYPE( void reply, (int reply, int replyee, int proc, int s));
 | |
| 
 | |
| FORWARD _PROTOTYPE( int read_register, (int register_address));
 | |
| FORWARD _PROTOTYPE( int get_cmostime, (struct tm *tmp, int y2kflag));
 | |
| FORWARD _PROTOTYPE( int dec_to_bcd, (int dec));
 | |
| FORWARD _PROTOTYPE( int bcd_to_dec, (int bcd));
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				   main 				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void main(void)
 | |
| {
 | |
|   message m;
 | |
|   int y2kflag;
 | |
|   int result;
 | |
|   int suspended = NONE;
 | |
|   int s;
 | |
| 
 | |
|   while(TRUE) {
 | |
| 
 | |
|       /* Get work. */
 | |
|       if (OK != (s=receive(ANY, &m)))
 | |
|           panic("CMOS", "attempt to receive work failed", s);
 | |
| 
 | |
|       /* Handle request. */
 | |
|       switch(m.m_type) {
 | |
| 
 | |
|       case DEV_OPEN:
 | |
|       case DEV_CLOSE:
 | |
|       case CANCEL:
 | |
|           reply(TASK_REPLY, m.m_source, m.IO_ENDPT, OK);
 | |
|           break;
 | |
| 
 | |
|       case DEV_PING:
 | |
| 	  notify(m.m_source);
 | |
| 	  break;
 | |
|       case DEV_IOCTL:				
 | |
| 
 | |
| 	  /* Probably best to SUSPEND the caller, CMOS I/O has nasty timeouts. 
 | |
| 	   * This way we don't block the rest of the system. First check if
 | |
|            * another process is already suspended. We cannot handle multiple
 | |
|            * requests at a time. 
 | |
|            */
 | |
|           if (suspended != NONE) {
 | |
|               reply(TASK_REPLY, m.m_source, m.IO_ENDPT, EBUSY);
 | |
|               break;
 | |
|           }
 | |
|           suspended = m.IO_ENDPT;
 | |
|           reply(TASK_REPLY, m.m_source, m.IO_ENDPT, SUSPEND);
 | |
| 
 | |
| 	  switch(m.REQUEST) {
 | |
| 	  case CIOCGETTIME:			/* get CMOS time */ 
 | |
|           case CIOCGETTIMEY2K:
 | |
|               y2kflag = (m.REQUEST = CIOCGETTIME) ? 0 : 1;
 | |
|               result = gettime(m.IO_ENDPT, y2kflag, (vir_bytes) m.ADDRESS);
 | |
|               break;
 | |
|           case CIOCSETTIME:
 | |
|           case CIOCSETTIMEY2K:
 | |
|           default:				/* unsupported ioctl */
 | |
|               result = ENOSYS;
 | |
|           }
 | |
| 
 | |
|           /* Request completed. Tell the caller to check our status. */
 | |
| 	  notify(m.m_source);
 | |
|           break;
 | |
| 
 | |
|       case DEV_STATUS:
 | |
| 
 | |
|           /* The FS calls back to get our status. Revive the suspended 
 | |
|            * processes and return the status of reading the CMOS.
 | |
|            */
 | |
| 	  if (suspended == NONE)
 | |
|               reply(DEV_NO_STATUS, m.m_source, NONE, OK);
 | |
|           else 
 | |
|               reply(DEV_REVIVE, m.m_source, suspended, result);
 | |
|           suspended = NONE;
 | |
|           break;
 | |
| 
 | |
|       case SYN_ALARM:		/* shouldn't happen */
 | |
|       case SYS_SIG:		/* ignore system events */
 | |
|           continue;		
 | |
| 
 | |
|       default:
 | |
|           reply(TASK_REPLY, m.m_source, m.IO_ENDPT, EINVAL);
 | |
|       }	
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				reply					     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE void reply(int code, int replyee, int process, int status)
 | |
| {
 | |
|   message m;
 | |
|   int s;
 | |
| 
 | |
|   m.m_type = code;		/* TASK_REPLY or REVIVE */
 | |
|   m.REP_STATUS = status;	/* result of device operation */
 | |
|   m.REP_ENDPT = process;	/* which user made the request */
 | |
|   if (OK != (s=send(replyee, &m)))
 | |
|       panic("CMOS", "sending reply failed", s);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				gettime					     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int gettime(int who, int y2kflag, vir_bytes dst_time)
 | |
| {
 | |
|   unsigned char mach_id, cmos_state;
 | |
|   struct tm time1;
 | |
|   int i, s;
 | |
| 
 | |
|   /* First obtain the machine ID to see if we can read the CMOS clock. Only
 | |
|    * for PS_386 and PC_AT this is possible. Otherwise, return an error.  
 | |
|    */
 | |
|   sys_vircopy(SELF, BIOS_SEG, (vir_bytes) MACHINE_ID_ADDR, 
 | |
|   	SELF, D, (vir_bytes) &mach_id, MACHINE_ID_SIZE);
 | |
|   if (mach_id != PS_386_MACHINE && mach_id != PC_AT_MACHINE) {
 | |
| 	printf("IS: Machine ID unknown. ID byte = %02x.\n", mach_id);
 | |
| 	return(EFAULT);
 | |
|   }
 | |
| 
 | |
|   /* Now check the CMOS' state to see if we can read a proper time from it.
 | |
|    * If the state is crappy, return an error.
 | |
|    */
 | |
|   cmos_state = read_register(CMOS_STATUS);
 | |
|   if (cmos_state & (CS_LOST_POWER | CS_BAD_CHKSUM | CS_BAD_TIME)) {
 | |
| 	printf( "IS: CMOS RAM error(s) found. State = 0x%02x\n", cmos_state );
 | |
| 	if (cmos_state & CS_LOST_POWER)
 | |
| 	    printf("IS: RTC lost power. Reset CMOS RAM with SETUP." );
 | |
| 	if (cmos_state & CS_BAD_CHKSUM)
 | |
| 	    printf("IS: CMOS RAM checksum is bad. Run SETUP." );
 | |
| 	if (cmos_state & CS_BAD_TIME)
 | |
| 	    printf("IS: Time invalid in CMOS RAM. Reset clock." );
 | |
| 	return(EFAULT);
 | |
|   }
 | |
| 
 | |
|   /* Everything seems to be OK. Read the CMOS real time clock and copy the
 | |
|    * result back to the caller.
 | |
|    */
 | |
|   if (get_cmostime(&time1, y2kflag) != 0)
 | |
| 	return(EFAULT);
 | |
|   sys_datacopy(SELF, (vir_bytes) &time1, 
 | |
|   	who, dst_time, sizeof(struct tm));
 | |
| 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| PRIVATE int get_cmostime(struct tm *t, int y2kflag)
 | |
| {
 | |
| /* Update the structure pointed to by time with the current time as read
 | |
|  * from CMOS RAM of the RTC. If necessary, the time is converted into a
 | |
|  * binary format before being stored in the structure.
 | |
|  */
 | |
|   int osec, n;
 | |
|   unsigned long i;
 | |
|   clock_t t0,t1;
 | |
| 
 | |
|   /* Start a timer to keep us from getting stuck on a dead clock. */
 | |
|   getuptime(&t0);
 | |
|   do {
 | |
| 	osec = -1;
 | |
| 	n = 0;
 | |
| 	do {
 | |
| 	        getuptime(&t1); 
 | |
| 		if (t1-t0 > 5*HZ) {
 | |
| 			printf("readclock: CMOS clock appears dead\n");
 | |
| 			return(1);
 | |
| 		}
 | |
| 
 | |
| 		/* Clock update in progress? */
 | |
| 		if (read_register(RTC_REG_A) & RTC_A_UIP) continue;
 | |
| 
 | |
| 		t->tm_sec = read_register(RTC_SEC);
 | |
| 		if (t->tm_sec != osec) {
 | |
| 			/* Seconds changed.  First from -1, then because the
 | |
| 			 * clock ticked, which is what we're waiting for to
 | |
| 			 * get a precise reading.
 | |
| 			 */
 | |
| 			osec = t->tm_sec;
 | |
| 			n++;
 | |
| 		}
 | |
| 	} while (n < 2);
 | |
| 
 | |
| 	/* Read the other registers. */
 | |
| 	t->tm_min = read_register(RTC_MIN);
 | |
| 	t->tm_hour = read_register(RTC_HOUR);
 | |
| 	t->tm_mday = read_register(RTC_MDAY);
 | |
| 	t->tm_mon = read_register(RTC_MONTH);
 | |
| 	t->tm_year = read_register(RTC_YEAR);
 | |
| 
 | |
| 	/* Time stable? */
 | |
|   } while (read_register(RTC_SEC) != t->tm_sec
 | |
| 	|| read_register(RTC_MIN) != t->tm_min
 | |
| 	|| read_register(RTC_HOUR) != t->tm_hour
 | |
| 	|| read_register(RTC_MDAY) != t->tm_mday
 | |
| 	|| read_register(RTC_MONTH) != t->tm_mon
 | |
| 	|| read_register(RTC_YEAR) != t->tm_year);
 | |
| 
 | |
|   if ((read_register(RTC_REG_B) & RTC_B_DM_BCD) == 0) {
 | |
| 	/* Convert BCD to binary (default RTC mode). */
 | |
| 	t->tm_year = bcd_to_dec(t->tm_year);
 | |
| 	t->tm_mon = bcd_to_dec(t->tm_mon);
 | |
| 	t->tm_mday = bcd_to_dec(t->tm_mday);
 | |
| 	t->tm_hour = bcd_to_dec(t->tm_hour);
 | |
| 	t->tm_min = bcd_to_dec(t->tm_min);
 | |
| 	t->tm_sec = bcd_to_dec(t->tm_sec);
 | |
|   }
 | |
|   t->tm_mon--;	/* Counts from 0. */
 | |
| 
 | |
|   /* Correct the year, good until 2080. */
 | |
|   if (t->tm_year < 80) t->tm_year += 100;
 | |
| 
 | |
|   if (y2kflag) {
 | |
| 	/* Clock with Y2K bug, interpret 1980 as 2000, good until 2020. */
 | |
| 	if (t->tm_year < 100) t->tm_year += 20;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| PRIVATE int read_register(int reg_addr)
 | |
| {
 | |
| /* Read a single CMOS register value. */
 | |
|   unsigned long r;
 | |
|   sys_outb(RTC_INDEX, reg_addr);
 | |
|   sys_inb(RTC_IO, &r);
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| PRIVATE int bcd_to_dec(int n)
 | |
| {
 | |
|   return ((n >> 4) & 0x0F) * 10 + (n & 0x0F);
 | |
| }
 | |
| 
 | |
| PRIVATE int dec_to_bcd(int n)
 | |
| {
 | |
|   return ((n / 10) << 4) | (n % 10);
 | |
| }
 | |
| 
 | 
