 eae250dea4
			
		
	
	
		eae250dea4
		
	
	
	
	
		
			
			instead of keeping a running total of enqueued processes (because somehow the load average was broken) . added SI_KPROC_TAB to get a copy of kernel process table from PM, for a top implementation . fixed arg to sys_nice() to make it an endpoint, not a slot number
		
			
				
	
	
		
			791 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			791 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /* This file contains essentially all of the process and message handling.
 | |
|  * Together with "mpx.s" it forms the lowest layer of the MINIX kernel.
 | |
|  * There is one entry point from the outside:
 | |
|  *
 | |
|  *   sys_call: 	      a system call, i.e., the kernel is trapped with an INT
 | |
|  *
 | |
|  * As well as several entry points used from the interrupt and task level:
 | |
|  *
 | |
|  *   lock_notify:     notify a process of a system event
 | |
|  *   lock_send:	      send a message to a process
 | |
|  *   lock_enqueue:    put a process on one of the scheduling queues 
 | |
|  *   lock_dequeue:    remove a process from the scheduling queues
 | |
|  *
 | |
|  * Changes:
 | |
|  *   Aug 19, 2005     rewrote scheduling code  (Jorrit N. Herder)
 | |
|  *   Jul 25, 2005     rewrote system call handling  (Jorrit N. Herder)
 | |
|  *   May 26, 2005     rewrote message passing functions  (Jorrit N. Herder)
 | |
|  *   May 24, 2005     new notification system call  (Jorrit N. Herder)
 | |
|  *   Oct 28, 2004     nonblocking send and receive calls  (Jorrit N. Herder)
 | |
|  *
 | |
|  * The code here is critical to make everything work and is important for the
 | |
|  * overall performance of the system. A large fraction of the code deals with
 | |
|  * list manipulation. To make this both easy to understand and fast to execute 
 | |
|  * pointer pointers are used throughout the code. Pointer pointers prevent
 | |
|  * exceptions for the head or tail of a linked list. 
 | |
|  *
 | |
|  *  node_t *queue, *new_node;	// assume these as global variables
 | |
|  *  node_t **xpp = &queue; 	// get pointer pointer to head of queue 
 | |
|  *  while (*xpp != NULL) 	// find last pointer of the linked list
 | |
|  *      xpp = &(*xpp)->next;	// get pointer to next pointer 
 | |
|  *  *xpp = new_node;		// now replace the end (the NULL pointer) 
 | |
|  *  new_node->next = NULL;	// and mark the new end of the list
 | |
|  * 
 | |
|  * For example, when adding a new node to the end of the list, one normally 
 | |
|  * makes an exception for an empty list and looks up the end of the list for 
 | |
|  * nonempty lists. As shown above, this is not required with pointer pointers.
 | |
|  */
 | |
| 
 | |
| #include <minix/com.h>
 | |
| #include <minix/callnr.h>
 | |
| #include <minix/endpoint.h>
 | |
| #include "debug.h"
 | |
| #include "kernel.h"
 | |
| #include "proc.h"
 | |
| #include <signal.h>
 | |
| 
 | |
| /* Scheduling and message passing functions. The functions are available to 
 | |
|  * other parts of the kernel through lock_...(). The lock temporarily disables 
 | |
|  * interrupts to prevent race conditions. 
 | |
|  */
 | |
| FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst_e,
 | |
| 		message *m_ptr, unsigned flags));
 | |
| FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
 | |
| 		message *m_ptr, unsigned flags));
 | |
| FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst));
 | |
| FORWARD _PROTOTYPE( int deadlock, (int function,
 | |
| 		register struct proc *caller, int src_dst));
 | |
| FORWARD _PROTOTYPE( void enqueue, (struct proc *rp));
 | |
| FORWARD _PROTOTYPE( void dequeue, (struct proc *rp));
 | |
| FORWARD _PROTOTYPE( void sched, (struct proc *rp, int *queue, int *front));
 | |
| FORWARD _PROTOTYPE( void pick_proc, (void));
 | |
| 
 | |
| #define BuildMess(m_ptr, src, dst_ptr) \
 | |
| 	(m_ptr)->m_source = proc_addr(src)->p_endpoint;		\
 | |
| 	(m_ptr)->m_type = NOTIFY_FROM(src);				\
 | |
| 	(m_ptr)->NOTIFY_TIMESTAMP = get_uptime();			\
 | |
| 	switch (src) {							\
 | |
| 	case HARDWARE:							\
 | |
| 		(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending;	\
 | |
| 		priv(dst_ptr)->s_int_pending = 0;			\
 | |
| 		break;							\
 | |
| 	case SYSTEM:							\
 | |
| 		(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_sig_pending;	\
 | |
| 		priv(dst_ptr)->s_sig_pending = 0;			\
 | |
| 		break;							\
 | |
| 	}
 | |
| 
 | |
| #if (CHIP == INTEL)
 | |
| #define CopyMess(s,sp,sm,dp,dm) \
 | |
| 	cp_mess(proc_addr(s)->p_endpoint, \
 | |
| 		(sp)->p_memmap[D].mem_phys,	\
 | |
| 		(vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
 | |
| #endif /* (CHIP == INTEL) */
 | |
| 
 | |
| #if (CHIP == M68000)
 | |
| /* M68000 does not have cp_mess() in assembly like INTEL. Declare prototype
 | |
|  * for cp_mess() here and define the function below. Also define CopyMess. 
 | |
|  */
 | |
| #endif /* (CHIP == M68000) */
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				sys_call				     * 
 | |
|  *===========================================================================*/
 | |
| PUBLIC int sys_call(call_nr, src_dst_e, m_ptr, bit_map)
 | |
| int call_nr;			/* system call number and flags */
 | |
| int src_dst_e;			/* src to receive from or dst to send to */
 | |
| message *m_ptr;			/* pointer to message in the caller's space */
 | |
| long bit_map;			/* notification event set or flags */
 | |
| {
 | |
| /* System calls are done by trapping to the kernel with an INT instruction.
 | |
|  * The trap is caught and sys_call() is called to send or receive a message
 | |
|  * (or both). The caller is always given by 'proc_ptr'.
 | |
|  */
 | |
|   register struct proc *caller_ptr = proc_ptr;	/* get pointer to caller */
 | |
|   int function = call_nr & SYSCALL_FUNC;	/* get system call function */
 | |
|   unsigned flags = call_nr & SYSCALL_FLAGS;	/* get flags */
 | |
|   int mask_entry;				/* bit to check in send mask */
 | |
|   int group_size;				/* used for deadlock check */
 | |
|   int result;					/* the system call's result */
 | |
|   int src_dst;
 | |
|   vir_clicks vlo, vhi;		/* virtual clicks containing message to send */
 | |
| 
 | |
| #if 0
 | |
|   if (caller_ptr->p_rts_flags & SLOT_FREE)
 | |
|   {
 | |
| 	kprintf("called by the dead?!?\n");
 | |
| 	return EINVAL;
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   /* Require a valid source and/ or destination process, unless echoing. */
 | |
|   if (src_dst_e != ANY && function != ECHO) {
 | |
|       if(!isokendpt(src_dst_e, &src_dst)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|           kprintf("sys_call: trap %d by %d with bad endpoint %d\n", 
 | |
|               function, proc_nr(caller_ptr), src_dst_e);
 | |
| #endif
 | |
| 	  return EDEADSRCDST;
 | |
|       }
 | |
|   } else src_dst = src_dst_e;
 | |
| 
 | |
|   /* Check if the process has privileges for the requested call. Calls to the 
 | |
|    * kernel may only be SENDREC, because tasks always reply and may not block 
 | |
|    * if the caller doesn't do receive(). 
 | |
|    */
 | |
|   if (! (priv(caller_ptr)->s_trap_mask & (1 << function)) || 
 | |
|           (iskerneln(src_dst) && function != SENDREC
 | |
|            && function != RECEIVE)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|       kprintf("sys_call: trap %d not allowed, caller %d, src_dst %d\n", 
 | |
|           function, proc_nr(caller_ptr), src_dst);
 | |
| #endif
 | |
|       return(ETRAPDENIED);		/* trap denied by mask or kernel */
 | |
|   }
 | |
| 
 | |
|   /* If the call involves a message buffer, i.e., for SEND, RECEIVE, SENDREC, 
 | |
|    * or ECHO, check the message pointer. This check allows a message to be 
 | |
|    * anywhere in data or stack or gap. It will have to be made more elaborate 
 | |
|    * for machines which don't have the gap mapped. 
 | |
|    */
 | |
|   if (function & CHECK_PTR) {
 | |
|       vlo = (vir_bytes) m_ptr >> CLICK_SHIFT;		
 | |
|       vhi = ((vir_bytes) m_ptr + MESS_SIZE - 1) >> CLICK_SHIFT;
 | |
|       if (vlo < caller_ptr->p_memmap[D].mem_vir || vlo > vhi ||
 | |
|               vhi >= caller_ptr->p_memmap[S].mem_vir + 
 | |
|               caller_ptr->p_memmap[S].mem_len) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|           kprintf("sys_call: invalid message pointer, trap %d, caller %d\n",
 | |
|           	function, proc_nr(caller_ptr));
 | |
| #endif
 | |
|           return(EFAULT); 		/* invalid message pointer */
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* If the call is to send to a process, i.e., for SEND, SENDREC or NOTIFY,
 | |
|    * verify that the caller is allowed to send to the given destination. 
 | |
|    */
 | |
|   if (function & CHECK_DST) {
 | |
|       if (! get_sys_bit(priv(caller_ptr)->s_ipc_to, nr_to_id(src_dst))) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|           kprintf("sys_call: ipc mask denied trap %d from %d to %d\n",
 | |
|           	function, proc_nr(caller_ptr), src_dst);
 | |
| #endif
 | |
|           return(ECALLDENIED);		/* call denied by ipc mask */
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* Check for a possible deadlock for blocking SEND(REC) and RECEIVE. */
 | |
|   if (function & CHECK_DEADLOCK) {
 | |
|       if (group_size = deadlock(function, caller_ptr, src_dst)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
|           kprintf("sys_call: trap %d from %d to %d deadlocked, group size %d\n",
 | |
|               function, proc_nr(caller_ptr), src_dst, group_size);
 | |
| #endif
 | |
|           return(ELOCKED);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* Now check if the call is known and try to perform the request. The only
 | |
|    * system calls that exist in MINIX are sending and receiving messages.
 | |
|    *   - SENDREC: combines SEND and RECEIVE in a single system call
 | |
|    *   - SEND:    sender blocks until its message has been delivered
 | |
|    *   - RECEIVE: receiver blocks until an acceptable message has arrived
 | |
|    *   - NOTIFY:  nonblocking call; deliver notification or mark pending
 | |
|    *   - ECHO:    nonblocking call; directly echo back the message 
 | |
|    */
 | |
|   switch(function) {
 | |
|   case SENDREC:
 | |
|       /* A flag is set so that notifications cannot interrupt SENDREC. */
 | |
|       caller_ptr->p_misc_flags |= REPLY_PENDING;
 | |
|       /* fall through */
 | |
|   case SEND:			
 | |
|       result = mini_send(caller_ptr, src_dst_e, m_ptr, flags);
 | |
|       if (function == SEND || result != OK) {	
 | |
|           break;				/* done, or SEND failed */
 | |
|       }						/* fall through for SENDREC */
 | |
|   case RECEIVE:			
 | |
|       if (function == RECEIVE)
 | |
|           caller_ptr->p_misc_flags &= ~REPLY_PENDING;
 | |
|       result = mini_receive(caller_ptr, src_dst_e, m_ptr, flags);
 | |
|       break;
 | |
|   case NOTIFY:
 | |
|       result = mini_notify(caller_ptr, src_dst);
 | |
|       break;
 | |
|   case ECHO:
 | |
|       CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, caller_ptr, m_ptr);
 | |
|       result = OK;
 | |
|       break;
 | |
|   default:
 | |
|       result = EBADCALL;			/* illegal system call */
 | |
|   }
 | |
| 
 | |
|   /* Now, return the result of the system call to the caller. */
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				deadlock				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int deadlock(function, cp, src_dst) 
 | |
| int function;					/* trap number */
 | |
| register struct proc *cp;			/* pointer to caller */
 | |
| int src_dst;					/* src or dst process */
 | |
| {
 | |
| /* Check for deadlock. This can happen if 'caller_ptr' and 'src_dst' have
 | |
|  * a cyclic dependency of blocking send and receive calls. The only cyclic 
 | |
|  * depency that is not fatal is if the caller and target directly SEND(REC)
 | |
|  * and RECEIVE to each other. If a deadlock is found, the group size is 
 | |
|  * returned. Otherwise zero is returned. 
 | |
|  */
 | |
|   register struct proc *xp;			/* process pointer */
 | |
|   int group_size = 1;				/* start with only caller */
 | |
|   int trap_flags;
 | |
| 
 | |
|   while (src_dst != ANY) { 			/* check while process nr */
 | |
|       int src_dst_e;
 | |
|       xp = proc_addr(src_dst);			/* follow chain of processes */
 | |
|       group_size ++;				/* extra process in group */
 | |
| 
 | |
|       /* Check whether the last process in the chain has a dependency. If it 
 | |
|        * has not, the cycle cannot be closed and we are done.
 | |
|        */
 | |
|       if (xp->p_rts_flags & RECEIVING) {	/* xp has dependency */
 | |
| 	  if(xp->p_getfrom_e == ANY) src_dst = ANY;
 | |
| 	  else okendpt(xp->p_getfrom_e, &src_dst);
 | |
|       } else if (xp->p_rts_flags & SENDING) {	/* xp has dependency */
 | |
| 	  okendpt(xp->p_sendto_e, &src_dst);
 | |
|       } else {
 | |
| 	  return(0);				/* not a deadlock */
 | |
|       }
 | |
| 
 | |
|       /* Now check if there is a cyclic dependency. For group sizes of two,  
 | |
|        * a combination of SEND(REC) and RECEIVE is not fatal. Larger groups
 | |
|        * or other combinations indicate a deadlock.  
 | |
|        */
 | |
|       if (src_dst == proc_nr(cp)) {		/* possible deadlock */
 | |
| 	  if (group_size == 2) {		/* caller and src_dst */
 | |
| 	      /* The function number is magically converted to flags. */
 | |
| 	      if ((xp->p_rts_flags ^ (function << 2)) & SENDING) { 
 | |
| 	          return(0);			/* not a deadlock */
 | |
| 	      }
 | |
| 	  }
 | |
|           return(group_size);			/* deadlock found */
 | |
|       }
 | |
|   }
 | |
|   return(0);					/* not a deadlock */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_send				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_send(caller_ptr, dst_e, m_ptr, flags)
 | |
| register struct proc *caller_ptr;	/* who is trying to send a message? */
 | |
| int dst_e;				/* to whom is message being sent? */
 | |
| message *m_ptr;				/* pointer to message buffer */
 | |
| unsigned flags;				/* system call flags */
 | |
| {
 | |
| /* Send a message from 'caller_ptr' to 'dst'. If 'dst' is blocked waiting
 | |
|  * for this message, copy the message to it and unblock 'dst'. If 'dst' is
 | |
|  * not waiting at all, or is waiting for another source, queue 'caller_ptr'.
 | |
|  */
 | |
|   register struct proc *dst_ptr;
 | |
|   register struct proc **xpp;
 | |
|   int dst_p;
 | |
| 
 | |
|   dst_p = _ENDPOINT_P(dst_e);
 | |
|   dst_ptr = proc_addr(dst_p);
 | |
| 
 | |
|   if (dst_ptr->p_rts_flags & NO_ENDPOINT) return EDSTDIED;
 | |
| 
 | |
|   /* Check if 'dst' is blocked waiting for this message. The destination's 
 | |
|    * SENDING flag may be set when its SENDREC call blocked while sending.  
 | |
|    */
 | |
|   if ( (dst_ptr->p_rts_flags & (RECEIVING | SENDING)) == RECEIVING &&
 | |
|        (dst_ptr->p_getfrom_e == ANY
 | |
|          || dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
 | |
| 	/* Destination is indeed waiting for this message. */
 | |
| 	CopyMess(caller_ptr->p_nr, caller_ptr, m_ptr, dst_ptr,
 | |
| 		 dst_ptr->p_messbuf);
 | |
| 	if ((dst_ptr->p_rts_flags &= ~RECEIVING) == 0) enqueue(dst_ptr);
 | |
|   } else if ( ! (flags & NON_BLOCKING)) {
 | |
| 	/* Destination is not waiting.  Block and dequeue caller. */
 | |
| 	caller_ptr->p_messbuf = m_ptr;
 | |
| 	if (caller_ptr->p_rts_flags == 0) dequeue(caller_ptr);
 | |
| 	caller_ptr->p_rts_flags |= SENDING;
 | |
| 	caller_ptr->p_sendto_e = dst_e;
 | |
| 
 | |
| 	/* Process is now blocked.  Put in on the destination's queue. */
 | |
| 	xpp = &dst_ptr->p_caller_q;		/* find end of list */
 | |
| 	while (*xpp != NIL_PROC) xpp = &(*xpp)->p_q_link;	
 | |
| 	*xpp = caller_ptr;			/* add caller to end */
 | |
| 	caller_ptr->p_q_link = NIL_PROC;	/* mark new end of list */
 | |
|   } else {
 | |
| 	return(ENOTREADY);
 | |
|   }
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_receive				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_receive(caller_ptr, src_e, m_ptr, flags)
 | |
| register struct proc *caller_ptr;	/* process trying to get message */
 | |
| int src_e;				/* which message source is wanted */
 | |
| message *m_ptr;				/* pointer to message buffer */
 | |
| unsigned flags;				/* system call flags */
 | |
| {
 | |
| /* A process or task wants to get a message.  If a message is already queued,
 | |
|  * acquire it and deblock the sender.  If no message from the desired source
 | |
|  * is available block the caller, unless the flags don't allow blocking.  
 | |
|  */
 | |
|   register struct proc **xpp;
 | |
|   register struct notification **ntf_q_pp;
 | |
|   message m;
 | |
|   int bit_nr;
 | |
|   sys_map_t *map;
 | |
|   bitchunk_t *chunk;
 | |
|   int i, src_id, src_proc_nr, src_p;
 | |
| 
 | |
|   if(src_e == ANY) src_p = ANY;
 | |
|   else
 | |
|   {
 | |
| 	okendpt(src_e, &src_p);
 | |
| 	if (proc_addr(src_p)->p_rts_flags & NO_ENDPOINT) return ESRCDIED;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Check to see if a message from desired source is already available.
 | |
|    * The caller's SENDING flag may be set if SENDREC couldn't send. If it is
 | |
|    * set, the process should be blocked.
 | |
|    */
 | |
|   if (!(caller_ptr->p_rts_flags & SENDING)) {
 | |
| 
 | |
|     /* Check if there are pending notifications, except for SENDREC. */
 | |
|     if (! (caller_ptr->p_misc_flags & REPLY_PENDING)) {
 | |
| 
 | |
|         map = &priv(caller_ptr)->s_notify_pending;
 | |
|         for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
 | |
| 
 | |
|             /* Find a pending notification from the requested source. */ 
 | |
|             if (! *chunk) continue; 			/* no bits in chunk */
 | |
|             for (i=0; ! (*chunk & (1<<i)); ++i) {} 	/* look up the bit */
 | |
|             src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
 | |
|             if (src_id >= NR_SYS_PROCS) break;		/* out of range */
 | |
|             src_proc_nr = id_to_nr(src_id);		/* get source proc */
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 	    if(src_proc_nr == NONE) {
 | |
| 		kprintf("mini_receive: sending notify from NONE\n");
 | |
| 	    }
 | |
| #endif
 | |
|             if (src_e!=ANY && src_p != src_proc_nr) continue;/* source not ok */
 | |
|             *chunk &= ~(1 << i);			/* no longer pending */
 | |
| 
 | |
|             /* Found a suitable source, deliver the notification message. */
 | |
| 	    BuildMess(&m, src_proc_nr, caller_ptr);	/* assemble message */
 | |
|             CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
 | |
|             return(OK);					/* report success */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check caller queue. Use pointer pointers to keep code simple. */
 | |
|     xpp = &caller_ptr->p_caller_q;
 | |
|     while (*xpp != NIL_PROC) {
 | |
|         if (src_e == ANY || src_p == proc_nr(*xpp)) {
 | |
| #if 0
 | |
| 	    if ((*xpp)->p_rts_flags & SLOT_FREE)
 | |
| 	    {
 | |
| 		kprintf("listening to the dead?!?\n");
 | |
| 		return EINVAL;
 | |
| 	    }
 | |
| #endif
 | |
| 
 | |
| 	    /* Found acceptable message. Copy it and update status. */
 | |
| 	    CopyMess((*xpp)->p_nr, *xpp, (*xpp)->p_messbuf, caller_ptr, m_ptr);
 | |
|             if (((*xpp)->p_rts_flags &= ~SENDING) == 0) enqueue(*xpp);
 | |
|             *xpp = (*xpp)->p_q_link;		/* remove from queue */
 | |
|             return(OK);				/* report success */
 | |
| 	}
 | |
| 	xpp = &(*xpp)->p_q_link;		/* proceed to next */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* No suitable message is available or the caller couldn't send in SENDREC. 
 | |
|    * Block the process trying to receive, unless the flags tell otherwise.
 | |
|    */
 | |
|   if ( ! (flags & NON_BLOCKING)) {
 | |
|       caller_ptr->p_getfrom_e = src_e;		
 | |
|       caller_ptr->p_messbuf = m_ptr;
 | |
|       if (caller_ptr->p_rts_flags == 0) dequeue(caller_ptr);
 | |
|       caller_ptr->p_rts_flags |= RECEIVING;		
 | |
|       return(OK);
 | |
|   } else {
 | |
|       return(ENOTREADY);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				mini_notify				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE int mini_notify(caller_ptr, dst)
 | |
| register struct proc *caller_ptr;	/* sender of the notification */
 | |
| int dst;				/* which process to notify */
 | |
| {
 | |
|   register struct proc *dst_ptr = proc_addr(dst);
 | |
|   int src_id;				/* source id for late delivery */
 | |
|   message m;				/* the notification message */
 | |
| 
 | |
|   /* Check to see if target is blocked waiting for this message. A process 
 | |
|    * can be both sending and receiving during a SENDREC system call.
 | |
|    */
 | |
|   if ((dst_ptr->p_rts_flags & (RECEIVING|SENDING)) == RECEIVING &&
 | |
|       ! (dst_ptr->p_misc_flags & REPLY_PENDING) &&
 | |
|       (dst_ptr->p_getfrom_e == ANY || 
 | |
|       dst_ptr->p_getfrom_e == caller_ptr->p_endpoint)) {
 | |
| 
 | |
|       /* Destination is indeed waiting for a message. Assemble a notification 
 | |
|        * message and deliver it. Copy from pseudo-source HARDWARE, since the
 | |
|        * message is in the kernel's address space.
 | |
|        */ 
 | |
|       BuildMess(&m, proc_nr(caller_ptr), dst_ptr);
 | |
|       CopyMess(proc_nr(caller_ptr), proc_addr(HARDWARE), &m, 
 | |
|           dst_ptr, dst_ptr->p_messbuf);
 | |
|       dst_ptr->p_rts_flags &= ~RECEIVING;	/* deblock destination */
 | |
|       if (dst_ptr->p_rts_flags == 0) enqueue(dst_ptr);
 | |
|       return(OK);
 | |
|   } 
 | |
| 
 | |
|   /* Destination is not ready to receive the notification. Add it to the 
 | |
|    * bit map with pending notifications. Note the indirectness: the system id 
 | |
|    * instead of the process number is used in the pending bit map.
 | |
|    */ 
 | |
|   src_id = priv(caller_ptr)->s_id;
 | |
|   set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id); 
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lock_notify				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int lock_notify(src_e, dst_e)
 | |
| int src_e;			/* (endpoint) sender of the notification */
 | |
| int dst_e;			/* (endpoint) who is to be notified */
 | |
| {
 | |
| /* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender
 | |
|  * is explicitely given to prevent confusion where the call comes from. MINIX 
 | |
|  * kernel is not reentrant, which means to interrupts are disabled after 
 | |
|  * the first kernel entry (hardware interrupt, trap, or exception). Locking
 | |
|  * is done by temporarily disabling interrupts. 
 | |
|  */
 | |
|   int result, src, dst;
 | |
| 
 | |
|   if(!isokendpt(src_e, &src) || !isokendpt(dst_e, &dst))
 | |
| 	return EDEADSRCDST;
 | |
| 
 | |
|   /* Exception or interrupt occurred, thus already locked. */
 | |
|   if (k_reenter >= 0) {
 | |
|       result = mini_notify(proc_addr(src), dst); 
 | |
|   }
 | |
| 
 | |
|   /* Call from task level, locking is required. */
 | |
|   else {
 | |
|       lock(0, "notify");
 | |
|       result = mini_notify(proc_addr(src), dst); 
 | |
|       unlock(0);
 | |
|   }
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				enqueue					     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void enqueue(rp)
 | |
| register struct proc *rp;	/* this process is now runnable */
 | |
| {
 | |
| /* Add 'rp' to one of the queues of runnable processes.  This function is 
 | |
|  * responsible for inserting a process into one of the scheduling queues. 
 | |
|  * The mechanism is implemented here.   The actual scheduling policy is
 | |
|  * defined in sched() and pick_proc().
 | |
|  */
 | |
|   int q;	 				/* scheduling queue to use */
 | |
|   int front;					/* add to front or back */
 | |
| 
 | |
| #if DEBUG_SCHED_CHECK
 | |
|   check_runqueues("enqueue");
 | |
|   if (rp->p_ready) kprintf("enqueue() already ready process\n");
 | |
| #endif
 | |
| 
 | |
|   /* Determine where to insert to process. */
 | |
|   sched(rp, &q, &front);
 | |
| 
 | |
|   /* Now add the process to the queue. */
 | |
|   if (rdy_head[q] == NIL_PROC) {		/* add to empty queue */
 | |
|       rdy_head[q] = rdy_tail[q] = rp; 		/* create a new queue */
 | |
|       rp->p_nextready = NIL_PROC;		/* mark new end */
 | |
|   } 
 | |
|   else if (front) {				/* add to head of queue */
 | |
|       rp->p_nextready = rdy_head[q];		/* chain head of queue */
 | |
|       rdy_head[q] = rp;				/* set new queue head */
 | |
|   } 
 | |
|   else {					/* add to tail of queue */
 | |
|       rdy_tail[q]->p_nextready = rp;		/* chain tail of queue */	
 | |
|       rdy_tail[q] = rp;				/* set new queue tail */
 | |
|       rp->p_nextready = NIL_PROC;		/* mark new end */
 | |
|   }
 | |
| 
 | |
|   /* Now select the next process to run. */
 | |
|   pick_proc();			
 | |
| 
 | |
| #if DEBUG_SCHED_CHECK
 | |
|   rp->p_ready = 1;
 | |
|   check_runqueues("enqueue");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				dequeue					     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void dequeue(rp)
 | |
| register struct proc *rp;	/* this process is no longer runnable */
 | |
| {
 | |
| /* A process must be removed from the scheduling queues, for example, because
 | |
|  * it has blocked.  If the currently active process is removed, a new process
 | |
|  * is picked to run by calling pick_proc().
 | |
|  */
 | |
|   register int q = rp->p_priority;		/* queue to use */
 | |
|   register struct proc **xpp;			/* iterate over queue */
 | |
|   register struct proc *prev_xp;
 | |
| 
 | |
|   /* Side-effect for kernel: check if the task's stack still is ok? */
 | |
|   if (iskernelp(rp)) { 				
 | |
| 	if (*priv(rp)->s_stack_guard != STACK_GUARD)
 | |
| 		panic("stack overrun by task", proc_nr(rp));
 | |
|   }
 | |
| 
 | |
| #if DEBUG_SCHED_CHECK
 | |
|   check_runqueues("dequeue");
 | |
|   if (! rp->p_ready) kprintf("dequeue() already unready process\n");
 | |
| #endif
 | |
| 
 | |
|   /* Now make sure that the process is not in its ready queue. Remove the 
 | |
|    * process if it is found. A process can be made unready even if it is not 
 | |
|    * running by being sent a signal that kills it.
 | |
|    */
 | |
|   prev_xp = NIL_PROC;				
 | |
|   for (xpp = &rdy_head[q]; *xpp != NIL_PROC; xpp = &(*xpp)->p_nextready) {
 | |
| 
 | |
|       if (*xpp == rp) {				/* found process to remove */
 | |
|           *xpp = (*xpp)->p_nextready;		/* replace with next chain */
 | |
|           if (rp == rdy_tail[q])		/* queue tail removed */
 | |
|               rdy_tail[q] = prev_xp;		/* set new tail */
 | |
|           if (rp == proc_ptr || rp == next_ptr)	/* active process removed */
 | |
|               pick_proc();			/* pick new process to run */
 | |
|           break;
 | |
|       }
 | |
|       prev_xp = *xpp;				/* save previous in chain */
 | |
|   }
 | |
| 
 | |
| #if DEBUG_SCHED_CHECK
 | |
|   rp->p_ready = 0;
 | |
|   check_runqueues("dequeue");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				sched					     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void sched(rp, queue, front)
 | |
| register struct proc *rp;			/* process to be scheduled */
 | |
| int *queue;					/* return: queue to use */
 | |
| int *front;					/* return: front or back */
 | |
| {
 | |
| /* This function determines the scheduling policy.  It is called whenever a
 | |
|  * process must be added to one of the scheduling queues to decide where to
 | |
|  * insert it.  As a side-effect the process' priority may be updated.  
 | |
|  */
 | |
|   int time_left = (rp->p_ticks_left > 0);	/* quantum fully consumed */
 | |
| 
 | |
|   /* Check whether the process has time left. Otherwise give a new quantum 
 | |
|    * and lower the process' priority, unless the process already is in the 
 | |
|    * lowest queue.  
 | |
|    */
 | |
|   if (! time_left) {				/* quantum consumed ? */
 | |
|       rp->p_ticks_left = rp->p_quantum_size; 	/* give new quantum */
 | |
|       if (rp->p_priority < (IDLE_Q-1)) {  	 
 | |
|           rp->p_priority += 1;			/* lower priority */
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* If there is time left, the process is added to the front of its queue, 
 | |
|    * so that it can immediately run. The queue to use simply is always the
 | |
|    * process' current priority. 
 | |
|    */
 | |
|   *queue = rp->p_priority;
 | |
|   *front = time_left;
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				pick_proc				     * 
 | |
|  *===========================================================================*/
 | |
| PRIVATE void pick_proc()
 | |
| {
 | |
| /* Decide who to run now.  A new process is selected by setting 'next_ptr'.
 | |
|  * When a billable process is selected, record it in 'bill_ptr', so that the 
 | |
|  * clock task can tell who to bill for system time.
 | |
|  */
 | |
|   register struct proc *rp;			/* process to run */
 | |
|   int q;					/* iterate over queues */
 | |
| 
 | |
|   /* Check each of the scheduling queues for ready processes. The number of
 | |
|    * queues is defined in proc.h, and priorities are set in the task table.
 | |
|    * The lowest queue contains IDLE, which is always ready.
 | |
|    */
 | |
|   for (q=0; q < NR_SCHED_QUEUES; q++) {	
 | |
|       if ( (rp = rdy_head[q]) != NIL_PROC) {
 | |
|           next_ptr = rp;			/* run process 'rp' next */
 | |
|           if (priv(rp)->s_flags & BILLABLE)	 	
 | |
|               bill_ptr = rp;			/* bill for system time */
 | |
|           return;				 
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				balance_queues				     *
 | |
|  *===========================================================================*/
 | |
| #define Q_BALANCE_TICKS	 100
 | |
| PUBLIC void balance_queues(tp)
 | |
| timer_t *tp;					/* watchdog timer pointer */
 | |
| {
 | |
| /* Check entire process table and give all process a higher priority. This
 | |
|  * effectively means giving a new quantum. If a process already is at its 
 | |
|  * maximum priority, its quantum will be renewed.
 | |
|  */
 | |
|   static timer_t queue_timer;			/* timer structure to use */
 | |
|   register struct proc* rp;			/* process table pointer  */
 | |
|   clock_t next_period;				/* time of next period  */
 | |
|   int ticks_added = 0;				/* total time added */
 | |
| 
 | |
|   for (rp=BEG_PROC_ADDR; rp<END_PROC_ADDR; rp++) {
 | |
|       if (! isemptyp(rp)) {				/* check slot use */
 | |
| 	  lock(5,"balance_queues");
 | |
| 	  if (rp->p_priority > rp->p_max_priority) {	/* update priority? */
 | |
| 	      if (rp->p_rts_flags == 0) dequeue(rp);	/* take off queue */
 | |
| 	      ticks_added += rp->p_quantum_size;	/* do accounting */
 | |
| 	      rp->p_priority -= 1;			/* raise priority */
 | |
| 	      if (rp->p_rts_flags == 0) enqueue(rp);	/* put on queue */
 | |
| 	  }
 | |
| 	  else {
 | |
| 	      ticks_added += rp->p_quantum_size - rp->p_ticks_left;
 | |
|               rp->p_ticks_left = rp->p_quantum_size; 	/* give new quantum */
 | |
| 	  }
 | |
| 	  unlock(5);
 | |
|       }
 | |
|   }
 | |
| #if DEBUG
 | |
|   kprintf("ticks_added: %d\n", ticks_added);
 | |
| #endif
 | |
| 
 | |
|   /* Now schedule a new watchdog timer to balance the queues again.  The 
 | |
|    * period depends on the total amount of quantum ticks added.
 | |
|    */
 | |
|   next_period = MAX(Q_BALANCE_TICKS, ticks_added);	/* calculate next */
 | |
|   set_timer(&queue_timer, get_uptime() + next_period, balance_queues);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lock_send				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int lock_send(dst_e, m_ptr)
 | |
| int dst_e;			/* to whom is message being sent? */
 | |
| message *m_ptr;			/* pointer to message buffer */
 | |
| {
 | |
| /* Safe gateway to mini_send() for tasks. */
 | |
|   int result;
 | |
|   lock(2, "send");
 | |
|   result = mini_send(proc_ptr, dst_e, m_ptr, NON_BLOCKING);
 | |
|   unlock(2);
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lock_enqueue				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void lock_enqueue(rp)
 | |
| struct proc *rp;		/* this process is now runnable */
 | |
| {
 | |
| /* Safe gateway to enqueue() for tasks. */
 | |
|   lock(3, "enqueue");
 | |
|   enqueue(rp);
 | |
|   unlock(3);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				lock_dequeue				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void lock_dequeue(rp)
 | |
| struct proc *rp;		/* this process is no longer runnable */
 | |
| {
 | |
| /* Safe gateway to dequeue() for tasks. */
 | |
|   if (k_reenter >= 0) {
 | |
| 	/* We're in an exception or interrupt, so don't lock (and ... 
 | |
| 	 * don't unlock).
 | |
| 	 */
 | |
| 	dequeue(rp);
 | |
|   } else {
 | |
| 	lock(4, "dequeue");
 | |
| 	dequeue(rp);
 | |
| 	unlock(4);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				isokendpt_f				     *
 | |
|  *===========================================================================*/
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| PUBLIC int isokendpt_f(file, line, e, p, fatalflag)
 | |
| char *file;
 | |
| int line;
 | |
| #else
 | |
| PUBLIC int isokendpt_f(e, p, fatalflag)
 | |
| #endif
 | |
| int e, *p, fatalflag;
 | |
| {
 | |
| 	int ok = 0;
 | |
| 	/* Convert an endpoint number into a process number.
 | |
| 	 * Return nonzero if the process is alive with the corresponding
 | |
| 	 * generation number, zero otherwise.
 | |
| 	 *
 | |
| 	 * This function is called with file and line number by the
 | |
| 	 * isokendpt_d macro if DEBUG_ENABLE_IPC_WARNINGS is defined,
 | |
| 	 * otherwise without. This allows us to print the where the
 | |
| 	 * conversion was attempted, making the errors verbose without
 | |
| 	 * adding code for that at every call.
 | |
| 	 * 
 | |
| 	 * If fatalflag is nonzero, we must panic if the conversion doesn't
 | |
| 	 * succeed.
 | |
| 	 */
 | |
| 	*p = _ENDPOINT_P(e);
 | |
| 	if(!isokprocn(*p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 		kprintf("kernel:%s:%d: bad endpoint %d: proc %d out of range\n",
 | |
| 		file, line, e, *p);
 | |
| #endif
 | |
| 	} else if(isemptyn(*p)) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 	kprintf("kernel:%s:%d: bad endpoint %d: proc %d empty\n", file, line, e, *p);
 | |
| #endif
 | |
| 	} else if(proc_addr(*p)->p_endpoint != e) {
 | |
| #if DEBUG_ENABLE_IPC_WARNINGS
 | |
| 		kprintf("kernel:%s:%d: bad endpoint %d: proc %d has ept %d (generation %d vs. %d)\n", file, line,
 | |
| 		e, *p, proc_addr(*p)->p_endpoint,
 | |
| 		_ENDPOINT_G(e), _ENDPOINT_G(proc_addr(*p)->p_endpoint));
 | |
| #endif
 | |
| 	} else ok = 1;
 | |
| 	if(!ok && fatalflag) {
 | |
| 		panic("invalid endpoint ", e);
 | |
| 	}
 | |
| 	return ok;
 | |
| }
 | |
| 
 |