1507 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1507 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Tests for MINIX3 ptrace(2) - by D.C. van Moolenbroek */
 | |
| #include <setjmp.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <signal.h>
 | |
| #include <unistd.h>
 | |
| #include <errno.h>
 | |
| #include <sys/wait.h>
 | |
| #include <sys/select.h>
 | |
| #include <sys/ptrace.h>
 | |
| #include <sys/syslimits.h>
 | |
| 
 | |
| #define ITERATIONS 3
 | |
| int max_error = 4;
 | |
| #include "common.h"
 | |
| 
 | |
| #define my_e(n) { \
 | |
| 	if (child) exit(n); printf("Attach type %d, ", attach); e(n); }
 | |
| 
 | |
| 
 | |
| #define _WIFSTOPPED(s) (WIFSTOPPED(s) && !WIFSIGNALED(s) && !WIFEXITED(s))
 | |
| #define _WIFSIGNALED(s) (!WIFSTOPPED(s) && WIFSIGNALED(s) && !WIFEXITED(s))
 | |
| #define _WIFEXITED(s) (!WIFSTOPPED(s) && !WIFSIGNALED(s) && WIFEXITED(s))
 | |
| 
 | |
| #define timed_test(func) (timed_test_func(#func, func));
 | |
| 
 | |
| int main(int argc, char **argv);
 | |
| void test(int m, int a);
 | |
| void timed_test_func(const char *s, void (* func)(void));
 | |
| void timed_test_timeout(int signum);
 | |
| pid_t traced_fork(void (*c) (void));
 | |
| pid_t traced_pfork(void (*c) (void));
 | |
| void WRITE(int value);
 | |
| int READ(void);
 | |
| void traced_wait(void);
 | |
| void detach_running(pid_t pid);
 | |
| void dummy_handler(int sig);
 | |
| void exit_handler(int sig);
 | |
| void count_handler(int sig);
 | |
| void catch_handler(int sig);
 | |
| void test_wait_child(void);
 | |
| void test_wait(void);
 | |
| void test_exec_child(void);
 | |
| void test_exec(void);
 | |
| void test_step_child(void);
 | |
| void test_step(void);
 | |
| void test_sig_child(void);
 | |
| void test_sig(void);
 | |
| void test_exit_child(void);
 | |
| void test_exit(void);
 | |
| void test_term_child(void);
 | |
| void test_term(void);
 | |
| void test_catch_child(void);
 | |
| void test_catch(void);
 | |
| void test_kill_child(void);
 | |
| void test_kill(void);
 | |
| void test_attach_child(void);
 | |
| void test_attach(void);
 | |
| void test_detach_child(void);
 | |
| void test_detach(void);
 | |
| void test_death_child(void);
 | |
| void test_death(void);
 | |
| void test_zdeath_child(void);
 | |
| void test_zdeath(void);
 | |
| void test_syscall_child(void);
 | |
| void test_syscall(void);
 | |
| void test_tracefork_child(void);
 | |
| void test_tracefork(void);
 | |
| void sigexec(int setflag, int opt, int *traps, int *stop);
 | |
| void test_trapexec(void);
 | |
| void test_altexec(void);
 | |
| void test_noexec(void);
 | |
| void test_defexec(void);
 | |
| void test_reattach_child(void);
 | |
| void test_reattach(void);
 | |
| 
 | |
| static char *executable;
 | |
| static int child = 0, attach;
 | |
| static pid_t ppid;
 | |
| static int pfd[4];
 | |
| static int sigs, caught;
 | |
| 
 | |
| int main(argc, argv)
 | |
| int argc;
 | |
| char **argv;
 | |
| {
 | |
|   int i, m = 0xFFFFFF, n = 0xF;
 | |
|   char cp_cmd[NAME_MAX + 10];
 | |
| 
 | |
|   if (strcmp(argv[0], "DO CHECK") == 0) {
 | |
| 	exit(42);
 | |
|   }
 | |
| 
 | |
|   start(42);
 | |
| 
 | |
|   executable = argv[0];
 | |
| 
 | |
|   snprintf(cp_cmd, sizeof(cp_cmd), "cp ../%s .", executable);
 | |
|   system(cp_cmd);
 | |
| 
 | |
|   if (argc >= 2) m = atoi(argv[1]);
 | |
|   if (argc >= 3) n = atoi(argv[2]);
 | |
| 
 | |
|   for (i = 0; i < ITERATIONS; i++) {
 | |
| 	if (n & 001) test(m, 0);
 | |
| 	if (n & 002) test(m, 1);
 | |
| 	if (n & 004) test(m, 2);
 | |
| 	if (n & 010) test(m, 3);
 | |
|   }
 | |
| 
 | |
|   quit();
 | |
|   return(-1);			/* impossible */
 | |
| }
 | |
| 
 | |
| void test(m, a)
 | |
| int m;
 | |
| int a;
 | |
| {
 | |
|   attach = a;
 | |
| 
 | |
|   if (m & 00000001) timed_test(test_wait);
 | |
|   if (m & 00000002) timed_test(test_exec);
 | |
| #if !defined(__arm__)
 | |
|   /* BJG: single-stepping isn't implemented on ARM */
 | |
|   if (m & 00000004) timed_test(test_step);
 | |
| #endif
 | |
|   if (m & 00000010) timed_test(test_sig);
 | |
|   if (m & 00000020) timed_test(test_exit);
 | |
|   if (m & 00000040) timed_test(test_term);
 | |
|   if (m & 00000100) timed_test(test_catch);
 | |
|   if (m & 00000200) timed_test(test_kill);
 | |
|   if (m & 00000400) timed_test(test_attach);
 | |
|   if (m & 00001000) timed_test(test_detach);
 | |
|   if (m & 00002000) timed_test(test_death);
 | |
|   if (m & 00004000) timed_test(test_zdeath);
 | |
|   if (m & 00010000) timed_test(test_syscall);
 | |
|   if (m & 00020000) timed_test(test_tracefork);
 | |
|   if (m & 00040000) timed_test(test_trapexec);
 | |
|   if (m & 00100000) timed_test(test_altexec);
 | |
|   if (m & 00200000) timed_test(test_noexec);
 | |
|   if (m & 00400000) timed_test(test_defexec);
 | |
|   if (m & 01000000) test_reattach(); /* not timed, catches SIGALRM */
 | |
| }
 | |
|   
 | |
| static jmp_buf timed_test_context;
 | |
| 
 | |
| void timed_test_timeout(int signum)
 | |
| {
 | |
|   longjmp(timed_test_context, -1);
 | |
|   my_e(700);
 | |
|   quit();
 | |
|   exit(-1);
 | |
| }
 | |
| 
 | |
| void timed_test_func(const char *s, void (* func)(void))
 | |
| {
 | |
|   if (setjmp(timed_test_context) == 0)
 | |
|   {
 | |
|     /* the function gets 60 seconds to complete */
 | |
|     if (signal(SIGALRM, timed_test_timeout) == SIG_ERR) { my_e(701); return; }
 | |
|     alarm(60);
 | |
|     func();
 | |
|     alarm(0);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     /* report timeout as error */
 | |
|     printf("timeout in %s\n", s);
 | |
|     my_e(702);
 | |
|   }
 | |
| }
 | |
| 
 | |
| pid_t traced_fork(c)
 | |
| void(*c) (void);
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, status;
 | |
| 
 | |
|   if (pipe(pfd) != 0) my_e(200);
 | |
|   if (pipe(&pfd[2]) != 0) my_e(201);
 | |
| 
 | |
|   switch (attach) {
 | |
|   case 0:			/* let child volunteer to be traced */
 | |
|   	pid = fork();
 | |
| 
 | |
|   	if (pid < 0) my_e(202);
 | |
| 
 | |
|   	if (pid == 0) {
 | |
| 		child = 1;
 | |
| 
 | |
| 		if (ptrace(T_OK, 0, 0, 0) != 0) my_e(203);
 | |
| 
 | |
| 		WRITE(0);
 | |
| 
 | |
| 		c();
 | |
| 
 | |
| 		my_e(204);
 | |
|   	}
 | |
| 
 | |
|   	if (READ() != 0) my_e(205);
 | |
| 
 | |
|   	break;
 | |
| 
 | |
|   case 1:			/* attach to child process */
 | |
| 	pid = fork();
 | |
| 
 | |
| 	if (pid < 0) my_e(206);
 | |
| 
 | |
| 	if (pid == 0) {
 | |
| 		child = 1;
 | |
| 
 | |
| 		if (READ() != 0) my_e(207);
 | |
| 
 | |
| 		c();
 | |
| 
 | |
| 		my_e(208);
 | |
| 	}
 | |
| 
 | |
| 	if (ptrace(T_ATTACH, pid, 0, 0) != 0) my_e(209);
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) my_e(210);
 | |
| 	if (!_WIFSTOPPED(status)) my_e(211);
 | |
| 	if (WSTOPSIG(status) != SIGSTOP) my_e(212);
 | |
| 
 | |
| 	if (ptrace(T_RESUME, pid, 0, 0) != 0) my_e(213);
 | |
| 
 | |
| 	WRITE(0);
 | |
| 
 | |
| 	break;
 | |
| 
 | |
|   case 2:			/* attach to non-child process */
 | |
| 	ppid = fork();
 | |
| 
 | |
| 	if (ppid < 0) my_e(214);
 | |
| 
 | |
| 	if (ppid == 0) {
 | |
| 		pid = fork();
 | |
| 
 | |
| 		if (pid < 0) exit(215);
 | |
| 
 | |
| 		if (pid == 0) {
 | |
| 			child = 1;
 | |
| 
 | |
| 			if (READ() != 0) my_e(216);
 | |
| 
 | |
| 			c();
 | |
| 
 | |
| 			my_e(217);
 | |
| 		}
 | |
| 
 | |
| 		child = 1;
 | |
| 
 | |
| 		WRITE(pid);
 | |
| 
 | |
| 		if (waitpid(pid, &status, 0) != pid) my_e(218);
 | |
| 		if (_WIFSTOPPED(status)) my_e(219);
 | |
| 		if (_WIFEXITED(status) && (r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
| 		exit(0);
 | |
| 	}
 | |
| 
 | |
| 	pid = READ();
 | |
| 
 | |
| 	if (ptrace(T_ATTACH, pid, 0, 0) != 0) my_e(220);
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) my_e(221);
 | |
| 	if (!_WIFSTOPPED(status)) my_e(222);
 | |
| 	if (WSTOPSIG(status) != SIGSTOP) my_e(223);
 | |
| 
 | |
| 	if (ptrace(T_RESUME, pid, 0, 0) != 0) my_e(224);
 | |
| 
 | |
| 	WRITE(0);
 | |
| 
 | |
|   	break;
 | |
| 
 | |
|   case 3:			/* attach by forking from child */
 | |
| 	ppid = fork();
 | |
| 
 | |
| 	if (ppid < 0) my_e(225);
 | |
| 
 | |
| 	if (ppid == 0) {
 | |
| 		child = 1;
 | |
| 
 | |
| 		if (ptrace(T_OK, 0, 0, 0) != 0) my_e(226);
 | |
| 
 | |
| 		WRITE(0);
 | |
| 
 | |
| 		if (READ() != 0) my_e(227);
 | |
| 
 | |
| 		pid = fork();
 | |
| 
 | |
| 		if (pid < 0) my_e(228);
 | |
| 
 | |
| 		if (pid == 0) {
 | |
| 			c();
 | |
| 
 | |
| 			my_e(229);
 | |
| 		}
 | |
| 
 | |
| 		WRITE(pid);
 | |
| 
 | |
| 		if (waitpid(pid, &status, 0) != pid) my_e(230);
 | |
| 		if (_WIFSTOPPED(status)) my_e(231);
 | |
| 		if (_WIFEXITED(status) && (r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
| 		exit(0);
 | |
| 	}
 | |
| 
 | |
| 	if (READ() != 0) my_e(232);
 | |
| 
 | |
| 	if (kill(ppid, SIGSTOP) != 0) my_e(233);
 | |
| 
 | |
| 	if (waitpid(ppid, &status, 0) != ppid) my_e(234);
 | |
| 	if (!_WIFSTOPPED(status)) my_e(235);
 | |
| 	if (WSTOPSIG(status) != SIGSTOP) my_e(236);
 | |
| 
 | |
| 	if (ptrace(T_SETOPT, ppid, 0, TO_TRACEFORK) != 0) my_e(237);
 | |
| 
 | |
| 	if (ptrace(T_RESUME, ppid, 0, 0) != 0) my_e(238);
 | |
| 
 | |
| 	WRITE(0);
 | |
| 
 | |
| 	pid = READ();
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) my_e(239);
 | |
| 	if (!_WIFSTOPPED(status)) my_e(240);
 | |
| 	if (WSTOPSIG(status) != SIGSTOP) my_e(241);
 | |
| 
 | |
| 	if (ptrace(T_SETOPT, pid, 0, 0) != 0) my_e(242);
 | |
| 	if (ptrace(T_RESUME, pid, 0, 0) != 0) my_e(243);
 | |
| 
 | |
| 	detach_running(ppid);
 | |
| 
 | |
| 	break;
 | |
|   }
 | |
| 
 | |
|   return pid;
 | |
| }
 | |
| 
 | |
| pid_t traced_pfork(c)
 | |
| void(*c) (void);
 | |
| {
 | |
|   pid_t pid;
 | |
| 
 | |
|   if (pipe(pfd) != 0) my_e(300);
 | |
|   if (pipe(&pfd[2]) != 0) my_e(301);
 | |
| 
 | |
|   pid = fork();
 | |
| 
 | |
|   if (pid < 0) my_e(302);
 | |
| 
 | |
|   if (pid == 0) {
 | |
| 	child = 1;
 | |
| 
 | |
| 	c();
 | |
| 
 | |
| 	my_e(303);
 | |
|   }
 | |
| 
 | |
|   return pid;
 | |
| }
 | |
| 
 | |
| void WRITE(value)
 | |
| int value;
 | |
| {
 | |
|   if (write(pfd[child*2+1], &value, sizeof(value)) != sizeof(value)) my_e(400);
 | |
| }
 | |
| 
 | |
| int READ()
 | |
| {
 | |
|   int value;
 | |
| 
 | |
|   if (read(pfd[2-child*2], &value, sizeof(value)) != sizeof(value)) my_e(401);
 | |
| 
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| void traced_wait()
 | |
| {
 | |
|   int r, status;
 | |
| 
 | |
|   if (attach == 2) {
 | |
| 	if (waitpid(ppid, &status, 0) != ppid) my_e(500);
 | |
| 	if (!_WIFEXITED(status)) my_e(501);
 | |
| 	if ((r = WEXITSTATUS(status)) != 0) my_e(r);
 | |
|   }
 | |
|   else {
 | |
| 	/* Quick hack to clean up detached children */
 | |
|   	waitpid(-1, NULL, WNOHANG);
 | |
|   }
 | |
| 
 | |
|   close(pfd[0]);
 | |
|   close(pfd[1]);
 | |
|   close(pfd[2]);
 | |
|   close(pfd[3]);
 | |
| }
 | |
| 
 | |
| void detach_running(pid)
 | |
| pid_t pid;
 | |
| {
 | |
| /* Detach from a process that is not already stopped. This is the way to do it.
 | |
|  * We have to stop the child in order to detach from it, but as the child may
 | |
|  * have other signals pending for the tracer, we cannot assume we get our own
 | |
|  * signal back immediately. However, because we know that the kill is instant
 | |
|  * and resuming with pending signals will only stop the process immediately
 | |
|  * again, we can use T_RESUME for all the signals until we get our own signal,
 | |
|  * and then detach. A complicating factor is that anywhere during this
 | |
|  * procedure, the child may die (e.g. by getting a SIGKILL). In our tests, this
 | |
|  * will not happen.
 | |
|  */
 | |
|   int status;
 | |
| 
 | |
|   if (kill(pid, SIGSTOP) != 0) my_e(600);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(601);
 | |
| 
 | |
|   while (_WIFSTOPPED(status)) {
 | |
| 	if (WSTOPSIG(status) == SIGSTOP) {
 | |
| 		if (ptrace(T_DETACH, pid, 0, 0) != 0) my_e(602);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ptrace(T_RESUME, pid, 0, WSTOPSIG(status)) != 0) my_e(603);
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) my_e(604);
 | |
|   }
 | |
| 
 | |
|   /* Apparently the process exited. */
 | |
|   if (!_WIFEXITED(status) && !_WIFSIGNALED(status)) my_e(605);
 | |
| 
 | |
|   /* In our tests, that should not happen. */
 | |
|   my_e(606);
 | |
| }
 | |
| 
 | |
| void dummy_handler(sig)
 | |
| int sig;
 | |
| {
 | |
| }
 | |
| 
 | |
| void exit_handler(sig)
 | |
| int sig;
 | |
| {
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void count_handler(sig)
 | |
| int sig;
 | |
| {
 | |
|   sigs++;
 | |
| }
 | |
| 
 | |
| void catch_handler(sig)
 | |
| int sig;
 | |
| {
 | |
|   sigset_t set;
 | |
|   int bit;
 | |
| 
 | |
|   switch (sig) {
 | |
|   case SIGUSR1: bit = 1; break;
 | |
|   case SIGUSR2: bit = 2; break;
 | |
|   case SIGTERM: bit = 4; break;
 | |
|   default: bit = 0; my_e(100);
 | |
|   }
 | |
| 
 | |
|   sigfillset(&set);
 | |
|   sigprocmask(SIG_SETMASK, &set, NULL);
 | |
| 
 | |
|   if (caught & bit) my_e(101);
 | |
|   caught |= bit;
 | |
| }
 | |
| 
 | |
| void test_wait_child()
 | |
| {
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void test_wait()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int status;
 | |
| 
 | |
|   subtest = 1;
 | |
| 
 | |
|   pid = traced_fork(test_wait_child);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(1);
 | |
|   if (!_WIFEXITED(status)) my_e(2);
 | |
|   if (WEXITSTATUS(status) != 42) my_e(3);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_exec_child()
 | |
| {
 | |
|   if (READ() != 0) my_e(100);
 | |
| 
 | |
|   execl(executable, "DO CHECK", NULL);
 | |
| 
 | |
|   my_e(101);
 | |
| }
 | |
| 
 | |
| void test_exec()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, status;
 | |
| 
 | |
|   /* This test covers the T_OK case. */
 | |
|   if (attach != 0) return;
 | |
| 
 | |
|   subtest = 2;
 | |
| 
 | |
|   pid = traced_fork(test_exec_child);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   /* An exec() should result in a trap signal. */
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(1);
 | |
|   if (!_WIFSTOPPED(status)) my_e(2);
 | |
|   if (WSTOPSIG(status) != SIGTRAP) my_e(3);
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, 0) != 0) my_e(4);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(5);
 | |
|   if (!_WIFEXITED(status)) my_e(6);
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_step_child()
 | |
| {
 | |
|   sigset_t set;
 | |
| 
 | |
|   signal(SIGUSR1, SIG_IGN);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   if (READ() != 0) my_e(100);
 | |
| 
 | |
|   /* It must not be possible for the child to stop the single-step signal. */
 | |
|   signal(SIGTRAP, SIG_IGN);
 | |
|   sigfillset(&set);
 | |
|   sigprocmask(SIG_SETMASK, &set, NULL);
 | |
| 
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void test_step()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, status, count;
 | |
| 
 | |
|   subtest = 3;
 | |
| 
 | |
|   pid = traced_fork(test_step_child);
 | |
| 
 | |
|   if (READ() != 0) my_e(1);
 | |
| 
 | |
|   /* While the child is running, neither waitpid() nor ptrace() should work. */
 | |
|   if (waitpid(pid, &status, WNOHANG) != 0) my_e(2);
 | |
|   if (ptrace(T_RESUME, pid, 0, 0) != -1) my_e(3);
 | |
|   if (errno != EBUSY) my_e(4);
 | |
| 
 | |
|   if (kill(pid, SIGUSR1) != 0) my_e(5);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   /* A kill() signal (other than SIGKILL) should be delivered to the tracer. */
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(6);
 | |
|   if (!_WIFSTOPPED(status)) my_e(7);
 | |
|   if (WSTOPSIG(status) != SIGUSR1) my_e(8);
 | |
| 
 | |
|   /* ptrace(T_STEP) should result in instruction-wise progress. */
 | |
|   for (count = 0; ; count++) {
 | |
| 	if (ptrace(T_STEP, pid, 0, 0) != 0) my_e(9);
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) my_e(10);
 | |
| 	if (_WIFEXITED(status)) break;
 | |
| 	if (!_WIFSTOPPED(status)) my_e(11);
 | |
| 	if (WSTOPSIG(status) != SIGTRAP) my_e(12);
 | |
|   }
 | |
| 
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   if (count < 10) my_e(13); /* in practice: hundreds */
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_sig_child()
 | |
| {
 | |
|   signal(SIGUSR1, exit_handler);
 | |
| 
 | |
|   if (READ() != 0) my_e(100);
 | |
| 
 | |
|   pause();
 | |
| 
 | |
|   my_e(101);
 | |
| }
 | |
| 
 | |
| void test_sig()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, sig, status;
 | |
| 
 | |
|   subtest = 4;
 | |
| 
 | |
|   pid = traced_fork(test_sig_child);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   /* allow the child to enter the pause */
 | |
|   sleep(1);
 | |
| 
 | |
|   if (kill(pid, SIGUSR1) != 0) my_e(1);
 | |
|   if (kill(pid, SIGUSR2) != 0) my_e(2);
 | |
| 
 | |
|   /* All signals should arrive at the tracer, although in "random" order. */
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(3);
 | |
|   if (!_WIFSTOPPED(status)) my_e(4);
 | |
|   if (WSTOPSIG(status) != SIGUSR1 && WSTOPSIG(status) != SIGUSR2) my_e(5);
 | |
| 
 | |
|   /* The tracer should see kills arriving while the tracee is stopped. */
 | |
|   if (kill(pid, WSTOPSIG(status)) != 0) my_e(6);
 | |
| 
 | |
|   if (waitpid(pid, &status, WNOHANG) != pid) my_e(7);
 | |
|   if (!_WIFSTOPPED(status)) my_e(8);
 | |
|   if (WSTOPSIG(status) != SIGUSR1 && WSTOPSIG(status) != SIGUSR2) my_e(9);
 | |
|   sig = (WSTOPSIG(status) == SIGUSR1) ? SIGUSR2 : SIGUSR1;
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, 0) != 0) my_e(10);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(11);
 | |
|   if (!_WIFSTOPPED(status)) my_e(12);
 | |
|   if (WSTOPSIG(status) != sig) my_e(13);
 | |
| 
 | |
|   if (waitpid(pid, &status, WNOHANG) != 0) my_e(14);
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, 0) != 0) my_e(15);
 | |
| 
 | |
|   /* Ignored signals passed via ptrace() should be ignored. */
 | |
|   if (kill(pid, SIGUSR1) != 0) my_e(16);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(17);
 | |
|   if (!_WIFSTOPPED(status)) my_e(18);
 | |
|   if (WSTOPSIG(status) != SIGUSR1) my_e(19);
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, SIGCHLD) != 0) my_e(20);
 | |
| 
 | |
|   /* if the pause has been aborted (shouldn't happen!), let the child exit */
 | |
|   sleep(1);
 | |
| 
 | |
|   if (waitpid(pid, &status, WNOHANG) != 0) my_e(21);
 | |
| 
 | |
|   /* Caught signals passed via ptrace() should invoke their signal handlers. */
 | |
|   if (kill(pid, SIGUSR1) != 0) my_e(22);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(23);
 | |
|   if (!_WIFSTOPPED(status)) my_e(24);
 | |
|   if (WSTOPSIG(status) != SIGUSR1) my_e(25);
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, SIGUSR1) != 0) my_e(26);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(27);
 | |
|   if (!_WIFEXITED(status)) my_e(28);
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(29);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_exit_child()
 | |
| {
 | |
|   WRITE(0);
 | |
| 
 | |
|   for(;;);
 | |
| }
 | |
| 
 | |
| void test_exit()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, status;
 | |
| 
 | |
|   subtest = 5;
 | |
| 
 | |
|   pid = traced_fork(test_exit_child);
 | |
| 
 | |
|   if (READ() != 0) my_e(1);
 | |
| 
 | |
|   sleep(1);
 | |
| 
 | |
|   if (kill(pid, SIGSTOP) != 0) my_e(2);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(3);
 | |
|   if (!_WIFSTOPPED(status)) my_e(4);
 | |
|   if (WSTOPSIG(status) != SIGSTOP) my_e(5);
 | |
| 
 | |
|   /* There should be no more signals pending for the tracer now. */
 | |
|   if (waitpid(pid, &status, WNOHANG) != 0) my_e(6);
 | |
| 
 | |
|   /* ptrace(T_EXIT) should terminate the process with the given exit value. */
 | |
|   if (ptrace(T_EXIT, pid, 0, 42) != 0) my_e(7);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(8);
 | |
|   if (!_WIFEXITED(status)) my_e(9);
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_term_child()
 | |
| {
 | |
|   signal(SIGUSR1, SIG_DFL);
 | |
|   signal(SIGUSR2, dummy_handler);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   pause();
 | |
| 
 | |
|   my_e(100);
 | |
| }
 | |
| 
 | |
| void test_term()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int status;
 | |
| 
 | |
|   subtest = 6;
 | |
| 
 | |
|   pid = traced_fork(test_term_child);
 | |
| 
 | |
|   if (READ() != 0) my_e(1);
 | |
| 
 | |
|   /* If the first of two signals terminates the traced child, the second signal
 | |
|    * may or may not be delivered to the tracer - this is merely a policy issue.
 | |
|    * However, nothing unexpected should happen.
 | |
|    */
 | |
|   if (kill(pid, SIGUSR1) != 0) my_e(2);
 | |
|   if (kill(pid, SIGUSR2) != 0) my_e(3);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(4);
 | |
|   if (!_WIFSTOPPED(status)) my_e(5);
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, SIGUSR1) != 0) my_e(6);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(7);
 | |
| 
 | |
|   if (_WIFSTOPPED(status)) {
 | |
| 	if (ptrace(T_RESUME, pid, 0, SIGUSR1) != 0) my_e(8);
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) my_e(9);
 | |
|   }
 | |
| 
 | |
|   if (!_WIFSIGNALED(status)) my_e(10);
 | |
|   if (WTERMSIG(status) != SIGUSR1) my_e(11);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_catch_child()
 | |
| {
 | |
|   struct sigaction sa;
 | |
|   sigset_t set, oset;
 | |
| 
 | |
|   sa.sa_handler = catch_handler;
 | |
|   sigemptyset(&sa.sa_mask);
 | |
|   sa.sa_flags = SA_NODEFER;
 | |
| 
 | |
|   sigaction(SIGUSR1, &sa, NULL);
 | |
|   sigaction(SIGUSR2, &sa, NULL);
 | |
|   sigaction(SIGTERM, &sa, NULL);
 | |
| 
 | |
|   sigfillset(&set);
 | |
|   sigprocmask(SIG_SETMASK, &set, &oset);
 | |
| 
 | |
|   caught = 0;
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   while (caught != 7) sigsuspend(&oset);
 | |
| 
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void test_catch()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, sig, status;
 | |
| 
 | |
|   subtest = 7;
 | |
| 
 | |
|   pid = traced_fork(test_catch_child);
 | |
| 
 | |
|   if (READ() != 0) my_e(1);
 | |
| 
 | |
|   if (kill(pid, SIGUSR1) != 0) my_e(2);
 | |
|   if (kill(pid, SIGUSR2) != 0) my_e(3);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(4);
 | |
|   if (!_WIFSTOPPED(status)) my_e(5);
 | |
|   if (WSTOPSIG(status) != SIGUSR1 && WSTOPSIG(status) != SIGUSR2) my_e(6);
 | |
|   sig = (WSTOPSIG(status) == SIGUSR1) ? SIGUSR2 : SIGUSR1;
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, WSTOPSIG(status)) != 0) my_e(7);
 | |
| 
 | |
|   if (kill(pid, SIGTERM) != 0) my_e(8);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(9);
 | |
|   if (!_WIFSTOPPED(status)) my_e(10);
 | |
|   if (WSTOPSIG(status) != sig && WSTOPSIG(status) != SIGTERM) my_e(11);
 | |
|   if (WSTOPSIG(status) == sig) sig = SIGTERM;
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, WSTOPSIG(status)) != 0) my_e(12);
 | |
| 
 | |
|   if (kill(pid, SIGBUS) != 0) my_e(13);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(14);
 | |
|   if (!_WIFSTOPPED(status)) my_e(15);
 | |
|   if (WSTOPSIG(status) != sig && WSTOPSIG(status) != SIGBUS) my_e(16);
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, sig) != 0) my_e(17);
 | |
| 
 | |
|   if (WSTOPSIG(status) == sig) sig = SIGBUS;
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(18);
 | |
|   if (!_WIFSTOPPED(status)) my_e(19);
 | |
|   if (WSTOPSIG(status) != sig) my_e(20);
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, 0) != 0) my_e(21);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(22);
 | |
|   if (!_WIFEXITED(status)) my_e(23);
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_kill_child()
 | |
| {
 | |
|   sigset_t set;
 | |
| 
 | |
|   signal(SIGKILL, SIG_IGN);
 | |
|   sigfillset(&set);
 | |
|   sigprocmask(SIG_SETMASK, &set, NULL);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   pause();
 | |
| 
 | |
|   my_e(100);
 | |
| }
 | |
| 
 | |
| void test_kill()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int status;
 | |
| 
 | |
|   subtest = 8;
 | |
| 
 | |
|   pid = traced_fork(test_kill_child);
 | |
| 
 | |
|   if (READ() != 0) my_e(1);
 | |
| 
 | |
|   /* SIGKILL must be unstoppable in every way. */
 | |
|   if (kill(pid, SIGKILL) != 0) my_e(2);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(3);
 | |
|   if (!_WIFSIGNALED(status)) my_e(4);
 | |
|   if (WTERMSIG(status) != SIGKILL) my_e(5);
 | |
| 
 | |
|   /* After termination, the child must no longer be visible to the tracer. */
 | |
|   if (waitpid(pid, &status, WNOHANG) != -1) my_e(6);
 | |
|   if (errno != ECHILD) my_e(7);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_attach_child()
 | |
| {
 | |
|   if (ptrace(T_OK, 0, 0, 0) != -1) my_e(100);
 | |
|   if (errno != EBUSY) my_e(101);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   if (READ() != 0) my_e(102);
 | |
| 
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void test_attach()
 | |
| {
 | |
|   pid_t pid;
 | |
| 
 | |
|   subtest = 9;
 | |
| 
 | |
|   /* Attaching to kernel processes is not allowed. */
 | |
|   if (ptrace(T_ATTACH, -1, 0, 0) != -1) my_e(1);
 | |
|   if (errno != ESRCH) my_e(2);
 | |
| 
 | |
|   /* Attaching to self is not allowed. */
 | |
|   if (ptrace(T_ATTACH, getpid(), 0, 0) != -1) my_e(3);
 | |
|   if (errno != EPERM) my_e(4);
 | |
| 
 | |
|   /* Attaching to PM is not allowed. */
 | |
| #if 0
 | |
|   /* FIXME: disabled until we can reliably determine PM's pid */
 | |
|   if (ptrace(T_ATTACH, 0, 0, 0) != -1) my_e(5);
 | |
|   if (errno != EPERM) my_e(6);
 | |
| #endif
 | |
| 
 | |
|   pid = traced_fork(test_attach_child);
 | |
| 
 | |
|   /* Attaching more than once is not allowed. */
 | |
|   if (ptrace(T_ATTACH, pid, 0, 0) != -1) my_e(7);
 | |
|   if (errno != EBUSY) my_e(8);
 | |
| 
 | |
|   if (READ() != 0) my_e(9);
 | |
| 
 | |
|   /* Detaching a running child should not succeed. */
 | |
|   if (ptrace(T_DETACH, pid, 0, 0) == 0) my_e(10);
 | |
|   if (errno != EBUSY) my_e(11);
 | |
| 
 | |
|   detach_running(pid);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_detach_child()
 | |
| {
 | |
|   struct sigaction sa;
 | |
|   sigset_t set, sset, oset;
 | |
| 
 | |
|   sa.sa_handler = catch_handler;
 | |
|   sigemptyset(&sa.sa_mask);
 | |
|   sa.sa_flags = SA_NODEFER;
 | |
| 
 | |
|   sigaction(SIGUSR1, &sa, NULL);
 | |
|   sigaction(SIGUSR2, &sa, NULL);
 | |
|   sigaction(SIGTERM, &sa, NULL);
 | |
| 
 | |
|   sigfillset(&set);
 | |
|   sigprocmask(SIG_SETMASK, &set, &oset);
 | |
| 
 | |
|   sigfillset(&sset);
 | |
|   sigdelset(&sset, SIGUSR1);
 | |
| 
 | |
|   caught = 0;
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   if (sigsuspend(&sset) != -1) my_e(102);
 | |
|   if (errno != EINTR) my_e(103);
 | |
| 
 | |
|   if (caught != 1) my_e(104);
 | |
| 
 | |
|   if (READ() != 0) my_e(105);
 | |
| 
 | |
|   while (caught != 7) sigsuspend(&oset);
 | |
| 
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void test_detach()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, status;
 | |
| 
 | |
|   /* Can't use traced_fork(), so simplify a bit */
 | |
|   if (attach != 0) return;
 | |
| 
 | |
|   subtest = 10;
 | |
| 
 | |
|   pid = traced_pfork(test_detach_child);
 | |
| 
 | |
|   if (READ() != 0) my_e(1);
 | |
| 
 | |
|   /* The tracer should not see signals sent to the process before attaching. */
 | |
|   if (kill(pid, SIGUSR2) != 0) my_e(2);
 | |
| 
 | |
|   if (ptrace(T_ATTACH, pid, 0, 0) != 0) my_e(3);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(4);
 | |
|   if (!_WIFSTOPPED(status)) my_e(5);
 | |
|   if (WSTOPSIG(status) != SIGSTOP) my_e(6);
 | |
| 
 | |
|   if (ptrace(T_RESUME, pid, 0, 0) != 0) my_e(7);
 | |
| 
 | |
|   if (kill(pid, SIGUSR1) != 0) my_e(8);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(9);
 | |
|   if (!_WIFSTOPPED(status)) my_e(10);
 | |
|   if (WSTOPSIG(status) != SIGUSR1) my_e(11);
 | |
| 
 | |
|   /* Signals pending at the tracer should be passed on after detaching. */
 | |
|   if (kill(pid, SIGTERM) != 0) my_e(12);
 | |
| 
 | |
|   /* A signal may be passed with the detach request. */
 | |
|   if (ptrace(T_DETACH, pid, 0, SIGUSR1) != 0) my_e(13);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(14);
 | |
|   if (!_WIFEXITED(status)) my_e(15);
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_death_child() 
 | |
| {
 | |
|   pid_t pid;
 | |
| 
 | |
|   pid = fork();
 | |
| 
 | |
|   if (pid < 0) my_e(100);
 | |
| 
 | |
|   if (pid == 0) {
 | |
| 	ptrace(T_OK, 0, 0, 0);
 | |
| 
 | |
| 	WRITE(getpid());
 | |
| 
 | |
|   	for (;;) pause();
 | |
|   }
 | |
| 
 | |
|   if (READ() != 0) my_e(101);
 | |
| 
 | |
|   kill(getpid(), SIGKILL);
 | |
| 
 | |
|   my_e(102);
 | |
| }
 | |
| 
 | |
| void test_death()
 | |
| {
 | |
|   pid_t pid, cpid;
 | |
|   int status;
 | |
| 
 | |
|   subtest = 11;
 | |
| 
 | |
|   pid = traced_fork(test_death_child);
 | |
| 
 | |
|   cpid = READ();
 | |
| 
 | |
|   if (kill(cpid, 0) != 0) my_e(1);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(2);
 | |
|   if (!_WIFSIGNALED(status)) my_e(3);
 | |
|   if (WTERMSIG(status) != SIGKILL) my_e(4);
 | |
| 
 | |
|   /* The children of killed tracers should be terminated. */
 | |
|   while (kill(cpid, 0) == 0) sleep(1);
 | |
|   if (errno != ESRCH) my_e(5);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_zdeath_child()
 | |
| {
 | |
|   if (READ() != 0) my_e(100);
 | |
| 
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void test_zdeath()
 | |
| {
 | |
|   pid_t pid, tpid;
 | |
|   int r, status;
 | |
| 
 | |
|   /* Can't use traced_fork(), so simplify a bit */
 | |
|   if (attach != 0) return;
 | |
| 
 | |
|   subtest = 12;
 | |
| 
 | |
|   pid = traced_pfork(test_zdeath_child);
 | |
| 
 | |
|   tpid = fork();
 | |
| 
 | |
|   if (tpid < 0) my_e(1);
 | |
| 
 | |
|   if (tpid == 0) {
 | |
| 	if (ptrace(T_ATTACH, pid, 0, 0) != 0) exit(101);
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) exit(102);
 | |
| 	if (!_WIFSTOPPED(status)) exit(103);
 | |
| 	if (WSTOPSIG(status) != SIGSTOP) exit(104);
 | |
| 
 | |
| 	if (ptrace(T_RESUME, pid, 0, 0) != 0) exit(105);
 | |
| 
 | |
| 	WRITE(0);
 | |
| 
 | |
| 	/* Unwaited-for traced zombies should be passed to their parent. */
 | |
| 	sleep(2);
 | |
| 
 | |
| 	exit(84);
 | |
|   }
 | |
| 
 | |
|   sleep(1);
 | |
| 
 | |
|   /* However, that should only happen once the tracer has actually died. */
 | |
|   if (waitpid(pid, &status, WNOHANG) != 0) my_e(2);
 | |
| 
 | |
|   if (waitpid(tpid, &status, 0) != tpid) my_e(3);
 | |
|   if (!_WIFEXITED(status)) my_e(4);
 | |
|   if ((r = WEXITSTATUS(status)) != 84) my_e(r);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(5);
 | |
|   if (!_WIFEXITED(status)) my_e(6);
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_syscall_child()
 | |
| {
 | |
|   signal(SIGUSR1, count_handler);
 | |
|   signal(SIGUSR2, count_handler);
 | |
| 
 | |
|   sigs = 0;
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   if (READ() != 0) my_e(100);
 | |
| 
 | |
|   /* Three calls (may fail) */
 | |
|   setuid(0);
 | |
|   close(123);
 | |
|   getpid();
 | |
| 
 | |
|   if (sigs != 2) my_e(101);
 | |
| 
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void test_syscall()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int i, r, sig, status;
 | |
| 
 | |
|   subtest = 13;
 | |
| 
 | |
|   pid = traced_fork(test_syscall_child);
 | |
| 
 | |
|   if (READ() != 0) my_e(1);
 | |
| 
 | |
|   if (kill(pid, SIGSTOP) != 0) my_e(2);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(3);
 | |
|   if (!_WIFSTOPPED(status)) my_e(4);
 | |
|   if (WSTOPSIG(status) != SIGSTOP) my_e(5);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   /* Upon resuming a first system call, no syscall leave event must be sent. */
 | |
|   if (ptrace(T_SYSCALL, pid, 0, 0) != 0) my_e(6);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(7);
 | |
| 
 | |
|   for (i = 0; _WIFSTOPPED(status); i++) {
 | |
| 	if (WSTOPSIG(status) != SIGTRAP) my_e(8);
 | |
| 
 | |
| 	/* Signals passed via T_SYSCALL should arrive, on enter and exit. */
 | |
| 	if (i == 3) sig = SIGUSR1;
 | |
| 	else if (i == 6) sig = SIGUSR2;
 | |
| 	else sig = 0;
 | |
| 
 | |
| 	if (ptrace(T_SYSCALL, pid, 0, sig) != 0) my_e(9);
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) my_e(10);
 | |
|   }
 | |
| 
 | |
|   if (!_WIFEXITED(status)) my_e(11);
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   /* The number of events seen is deterministic but libc-dependent. */
 | |
|   if (i < 10 || i > 100) my_e(12);
 | |
| 
 | |
|   /* The last system call event must be for entering exit(). */
 | |
|   if (!(i % 2)) my_e(13);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_tracefork_child()
 | |
| {
 | |
|   pid_t pid;
 | |
| 
 | |
|   signal(SIGHUP, SIG_IGN);
 | |
| 
 | |
|   pid = setsid();
 | |
| 
 | |
|   WRITE(pid);
 | |
| 
 | |
|   if (READ() != 0) my_e(100);
 | |
| 
 | |
|   if ((pid = fork()) < 0) my_e(101);
 | |
| 
 | |
|   exit(pid > 0 ? 42 : 84);
 | |
| }
 | |
| 
 | |
| void test_tracefork()
 | |
| {
 | |
|   pid_t pgrp, ppid, cpid, wpid;
 | |
|   int r, status, gotstop, ptraps, ctraps;
 | |
| 
 | |
|   subtest = 14;
 | |
| 
 | |
|   ppid = traced_fork(test_tracefork_child);
 | |
| 
 | |
|   if ((pgrp = READ()) <= 0) my_e(1);
 | |
| 
 | |
|   if (kill(ppid, SIGSTOP) != 0) my_e(2);
 | |
| 
 | |
|   if (waitpid(ppid, &status, 0) != ppid) my_e(3);
 | |
|   if (!_WIFSTOPPED(status)) my_e(4);
 | |
|   if (WSTOPSIG(status) != SIGSTOP) my_e(5);
 | |
| 
 | |
|   if (ptrace(T_SETOPT, ppid, 0, TO_TRACEFORK) != 0) my_e(6);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   if (ptrace(T_SYSCALL, ppid, 0, 0) != 0) my_e(7);
 | |
| 
 | |
|   cpid = -1;
 | |
|   gotstop = -1;
 | |
| 
 | |
|   /* Count how many traps we get for parent and child, until they both exit. */
 | |
|   for (ptraps = ctraps = 0; ppid || cpid; ) {
 | |
| 	wpid = waitpid(-pgrp, &status, 0);
 | |
| 
 | |
| 	if (wpid <= 0) my_e(8);
 | |
| 	if (cpid < 0 && wpid != ppid) {
 | |
| 		cpid = wpid;
 | |
| 		gotstop = 0;
 | |
| 	}
 | |
| 	if (wpid != ppid && wpid != cpid) my_e(9);
 | |
| 
 | |
| 	if (_WIFEXITED(status)) {
 | |
| 		if (wpid == ppid) {
 | |
| 			if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 			ppid = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			if ((r = WEXITSTATUS(status)) != 84) my_e(r);
 | |
| 			cpid = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if (!_WIFSTOPPED(status)) my_e(10);
 | |
| 
 | |
| 		switch (WSTOPSIG(status)) {
 | |
| 		case SIGCHLD:
 | |
| 		case SIGHUP:
 | |
| 			break;
 | |
| 		case SIGSTOP:
 | |
| 			if (wpid != cpid) my_e(11);
 | |
| 			if (gotstop) my_e(12);
 | |
| 			gotstop = 1;
 | |
| 			break;
 | |
| 		case SIGTRAP: 
 | |
| 			if (wpid == ppid) ptraps++;
 | |
| 			else ctraps++;
 | |
| 			break;
 | |
| 		default:
 | |
| 			my_e(13);
 | |
| 		}
 | |
| 
 | |
| 		if (ptrace(T_SYSCALL, wpid, 0, 0) != 0) my_e(14);
 | |
| 	}
 | |
|   }
 | |
| 
 | |
|   /* The parent should get an odd number of traps: the first one is a syscall
 | |
|    * enter trap (typically for the fork()), the last one is the syscall enter
 | |
|    * trap for its exit().
 | |
|    */
 | |
|   if (ptraps < 3) my_e(15);
 | |
|   if (!(ptraps % 2)) my_e(16);
 | |
| 
 | |
|   /* The child should get an even number of traps: the first one is a syscall
 | |
|    * leave trap from the fork(), the last one is the syscall enter trap for
 | |
|    * its exit().
 | |
|    */
 | |
|   if (ctraps < 2) my_e(17);
 | |
|   if (ctraps % 2) my_e(18);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void sigexec(setflag, opt, traps, stop)
 | |
| int setflag;
 | |
| int opt;
 | |
| int *traps;
 | |
| int *stop;
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, status;
 | |
| 
 | |
|   pid = traced_fork(test_exec_child);
 | |
| 
 | |
|   if (kill(pid, SIGSTOP) != 0) my_e(1);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(2);
 | |
|   if (!_WIFSTOPPED(status)) my_e(3);
 | |
|   if (WSTOPSIG(status) != SIGSTOP) my_e(4);
 | |
| 
 | |
|   if (setflag && ptrace(T_SETOPT, pid, 0, opt) != 0) my_e(5);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   if (ptrace(T_SYSCALL, pid, 0, 0) != 0) my_e(6);
 | |
| 
 | |
|   *traps = 0;
 | |
|   *stop = -1;
 | |
| 
 | |
|   for (;;) {
 | |
|   	if (waitpid(pid, &status, 0) != pid) my_e(7);
 | |
| 
 | |
|   	if (_WIFEXITED(status)) break;
 | |
| 
 | |
|   	if (!_WIFSTOPPED(status)) my_e(8);
 | |
| 
 | |
|   	switch (WSTOPSIG(status)) {
 | |
|   	case SIGTRAP:
 | |
| 		(*traps)++;
 | |
| 		break;
 | |
|   	case SIGSTOP:
 | |
|   		if (*stop >= 0) my_e(9);
 | |
|   		*stop = *traps;
 | |
|   		break;
 | |
|   	default:
 | |
| 		my_e(10);
 | |
|   	}
 | |
| 
 | |
|   	if (ptrace(T_SYSCALL, pid, 0, 0) != 0) my_e(11);
 | |
|   }
 | |
| 
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | |
| void test_trapexec()
 | |
| {
 | |
|   int traps, stop;
 | |
| 
 | |
|   subtest = 15;
 | |
| 
 | |
|   sigexec(1, 0, &traps, &stop);
 | |
| 
 | |
|   /* The exec does not cause a SIGSTOP. This gives us an even number of traps;
 | |
|    * as above, but plus the exec()'s extra SIGTRAP. This trap is
 | |
|    * indistinguishable from a syscall trap, especially when considering failed
 | |
|    * exec() calls and immediately following signal handler invocations.
 | |
|    */
 | |
|   if (traps < 4) my_e(12);
 | |
|   if (traps % 2) my_e(13);
 | |
|   if (stop >= 0) my_e(14);
 | |
| }
 | |
| 
 | |
| void test_altexec()
 | |
| {
 | |
|   int traps, stop;
 | |
| 
 | |
|   subtest = 16;
 | |
| 
 | |
|   sigexec(1, TO_ALTEXEC, &traps, &stop);
 | |
| 
 | |
|   /* The exec causes a SIGSTOP. This gives us an odd number of traps: a pair
 | |
|    * for each system call, plus one for the final exit(). The stop must have
 | |
|    * taken place after a syscall enter event, i.e. must be odd as well.
 | |
|    */
 | |
|   if (traps < 3) my_e(12);
 | |
|   if (!(traps % 2)) my_e(13);
 | |
|   if (stop < 0) my_e(14);
 | |
|   if (!(stop % 2)) my_e(15);
 | |
| }
 | |
| 
 | |
| void test_noexec()
 | |
| {
 | |
|   int traps, stop;
 | |
| 
 | |
|   subtest = 17;
 | |
| 
 | |
|   sigexec(1, TO_NOEXEC, &traps, &stop);
 | |
| 
 | |
|   /* The exec causes no signal at all. As above, but without the SIGSTOPs. */
 | |
|   if (traps < 3) my_e(12);
 | |
|   if (!(traps % 2)) my_e(13);
 | |
|   if (stop >= 0) my_e(14);
 | |
| }
 | |
| 
 | |
| void test_defexec()
 | |
| {
 | |
|   int traps, stop;
 | |
| 
 | |
|   /* We want to test the default of T_OK (0) and T_ATTACH (TO_NOEXEC). */
 | |
|   if (attach != 0 && attach != 1) return;
 | |
| 
 | |
|   subtest = 18;
 | |
| 
 | |
|   /* Do not set any options this time. */
 | |
|   sigexec(0, 0, &traps, &stop);
 | |
| 
 | |
|   /* See above. */
 | |
|   if (attach == 0) {
 | |
| 	if (traps < 4) my_e(12);
 | |
| 	if (traps % 2) my_e(13);
 | |
| 	if (stop >= 0) my_e(14);
 | |
|   }
 | |
|   else {
 | |
| 	if (traps < 3) my_e(15);
 | |
| 	if (!(traps % 2)) my_e(16);
 | |
| 	if (stop >= 0) my_e(17);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void test_reattach_child()
 | |
| {
 | |
|   struct timeval tv;
 | |
| 
 | |
|   if (READ() != 0) my_e(100);
 | |
| 
 | |
|   tv.tv_sec = 2;
 | |
|   tv.tv_usec = 0;
 | |
|   if (select(0, NULL, NULL, NULL, &tv) != 0) my_e(101);
 | |
| 
 | |
|   exit(42);
 | |
| }
 | |
| 
 | |
| void test_reattach()
 | |
| {
 | |
|   pid_t pid;
 | |
|   int r, status, count;
 | |
| 
 | |
|   subtest = 19;
 | |
| 
 | |
|   pid = traced_fork(test_reattach_child);
 | |
| 
 | |
|   if (kill(pid, SIGSTOP) != 0) my_e(1);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(2);
 | |
|   if (!_WIFSTOPPED(status)) my_e(3);
 | |
|   if (WSTOPSIG(status) != SIGSTOP) my_e(4);
 | |
| 
 | |
|   WRITE(0);
 | |
| 
 | |
|   signal(SIGALRM, dummy_handler);
 | |
|   alarm(1);
 | |
| 
 | |
|   /* Start tracing system calls. We don't know how many there will be until
 | |
|    * we reach the child's select(), so we have to interrupt ourselves.
 | |
|    * The hard assumption here is that the child is able to enter the select()
 | |
|    * within a second, despite being traced. If this is not the case, the test
 | |
|    * may hang or fail, and the child may die from a SIGTRAP.
 | |
|    */
 | |
|   if (ptrace(T_SYSCALL, pid, 0, 0) != 0) my_e(5);
 | |
| 
 | |
|   for (count = 0; (r = waitpid(pid, &status, 0)) == pid; count++) {
 | |
| 	if (!_WIFSTOPPED(status)) my_e(6);
 | |
| 	if (WSTOPSIG(status) != SIGTRAP) my_e(7);
 | |
| 
 | |
| 	if (ptrace(T_SYSCALL, pid, 0, 0) != 0) my_e(8);
 | |
|   }
 | |
| 
 | |
|   if (r != -1 || errno != EINTR) my_e(9);
 | |
| 
 | |
|   /* We always start with syscall enter event; the last event we should have
 | |
|    * seen before the alarm was entering the select() call.
 | |
|    */
 | |
|   if (!(count % 2)) my_e(10);
 | |
| 
 | |
|   /* Detach, and immediately attach again. */
 | |
|   detach_running(pid);
 | |
| 
 | |
|   if (ptrace(T_ATTACH, pid, 0, 0) != 0) my_e(11);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(12);
 | |
|   if (!_WIFSTOPPED(status)) my_e(13);
 | |
|   if (WSTOPSIG(status) != SIGSTOP) my_e(14);
 | |
| 
 | |
|   if (ptrace(T_SYSCALL, pid, 0, 0) != 0) my_e(15);
 | |
| 
 | |
|   if (waitpid(pid, &status, 0) != pid) my_e(16);
 | |
| 
 | |
|   for (count = 0; _WIFSTOPPED(status); count++) {
 | |
| 	if (WSTOPSIG(status) != SIGTRAP) my_e(17);
 | |
| 
 | |
| 	if (ptrace(T_SYSCALL, pid, 0, 0) != 0) my_e(18);
 | |
| 
 | |
| 	if (waitpid(pid, &status, 0) != pid) my_e(19);
 | |
|   }
 | |
| 
 | |
|   if (!_WIFEXITED(status)) my_e(20);
 | |
|   if ((r = WEXITSTATUS(status)) != 42) my_e(r);
 | |
| 
 | |
|   /* We must not have seen the select()'s syscall leave event, and the last
 | |
|    * event will be the syscall enter for the exit().
 | |
|    */
 | |
|   if (!(count % 2)) my_e(21);
 | |
| 
 | |
|   traced_wait();
 | |
| }
 | |
| 
 | 
