 1a7f7d6333
			
		
	
	
		1a7f7d6333
		
	
	
	
	
		
			
			pm: fixed rebooting by making a copy of the monitor code from the user
    process. this is necessary because that process is dead by the time
    sys_abort() is called.
    also added more info to the "can't reply" panic.
		
	
			
		
			
				
	
	
		
			473 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			473 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This file contains the main program of the process manager and some related
 | |
|  * procedures.  When MINIX starts up, the kernel runs for a little while,
 | |
|  * initializing itself and its tasks, and then it runs PM and FS.  Both PM
 | |
|  * and FS initialize themselves as far as they can. PM asks the kernel for
 | |
|  * all free memory and starts serving requests.
 | |
|  *
 | |
|  * The entry points into this file are:
 | |
|  *   main:	starts PM running
 | |
|  *   setreply:	set the reply to be sent to process making an PM system call
 | |
|  */
 | |
| 
 | |
| #include "pm.h"
 | |
| #include <minix/keymap.h>
 | |
| #include <minix/callnr.h>
 | |
| #include <minix/com.h>
 | |
| #include <minix/endpoint.h>
 | |
| #include <signal.h>
 | |
| #include <stdlib.h>
 | |
| #include <fcntl.h>
 | |
| #include <sys/resource.h>
 | |
| #include <string.h>
 | |
| #include "mproc.h"
 | |
| #include "param.h"
 | |
| 
 | |
| #include "../../kernel/const.h"
 | |
| #include "../../kernel/config.h"
 | |
| #include "../../kernel/type.h"
 | |
| #include "../../kernel/proc.h"
 | |
| 
 | |
| FORWARD _PROTOTYPE( void get_work, (void)				);
 | |
| FORWARD _PROTOTYPE( void pm_init, (void)				);
 | |
| FORWARD _PROTOTYPE( int get_nice_value, (int queue)			);
 | |
| FORWARD _PROTOTYPE( void get_mem_chunks, (struct memory *mem_chunks) 	);
 | |
| FORWARD _PROTOTYPE( void patch_mem_chunks, (struct memory *mem_chunks, 
 | |
| 	struct mem_map *map_ptr) 	);
 | |
| FORWARD _PROTOTYPE( void do_x86_vm, (struct memory mem_chunks[NR_MEMS])	);
 | |
| 
 | |
| #define click_to_round_k(n) \
 | |
| 	((unsigned) ((((unsigned long) (n) << CLICK_SHIFT) + 512) / 1024))
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				main					     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC int main()
 | |
| {
 | |
| /* Main routine of the process manager. */
 | |
|   int result, s, proc_nr;
 | |
|   struct mproc *rmp;
 | |
|   sigset_t sigset;
 | |
| 
 | |
|   pm_init();			/* initialize process manager tables */
 | |
| 
 | |
|   /* This is PM's main loop-  get work and do it, forever and forever. */
 | |
|   while (TRUE) {
 | |
| 	get_work();		/* wait for an PM system call */
 | |
| 
 | |
| 	/* Check for system notifications first. Special cases. */
 | |
| 	if (call_nr == SYN_ALARM) {
 | |
| 		pm_expire_timers(m_in.NOTIFY_TIMESTAMP);
 | |
| 		result = SUSPEND;		/* don't reply */
 | |
| 	} else if (call_nr == SYS_SIG) {	/* signals pending */
 | |
| 		sigset = m_in.NOTIFY_ARG;
 | |
| 		if (sigismember(&sigset, SIGKSIG))  {
 | |
| 			(void) ksig_pending();
 | |
| 		} 
 | |
| 		result = SUSPEND;		/* don't reply */
 | |
| 	}
 | |
| 	/* Else, if the system call number is valid, perform the call. */
 | |
| 	else if ((unsigned) call_nr >= NCALLS) {
 | |
| 		result = ENOSYS;
 | |
| 	} else {
 | |
| 		result = (*call_vec[call_nr])();
 | |
| 	}
 | |
| 
 | |
| 	/* Send the results back to the user to indicate completion. */
 | |
| 	if (result != SUSPEND) setreply(who_p, result);
 | |
| 
 | |
| 	swap_in();		/* maybe a process can be swapped in? */
 | |
| 
 | |
| 	/* Send out all pending reply messages, including the answer to
 | |
| 	 * the call just made above.  The processes must not be swapped out.
 | |
| 	 */
 | |
| 	for (proc_nr=0, rmp=mproc; proc_nr < NR_PROCS; proc_nr++, rmp++) {
 | |
| 		/* In the meantime, the process may have been killed by a
 | |
| 		 * signal (e.g. if a lethal pending signal was unblocked)
 | |
| 		 * without the PM realizing it. If the slot is no longer in
 | |
| 		 * use or just a zombie, don't try to reply.
 | |
| 		 */
 | |
| 		if ((rmp->mp_flags & (REPLY | ONSWAP | IN_USE | ZOMBIE)) ==
 | |
| 		   (REPLY | IN_USE)) {
 | |
| 			if ((s=send(rmp->mp_endpoint, &rmp->mp_reply)) != OK) {
 | |
| 				printf("PM can't reply to %d (%s)\n",
 | |
| 					rmp->mp_endpoint, rmp->mp_name);
 | |
| 				panic(__FILE__, "PM can't reply", NO_NUM);
 | |
| 			}
 | |
| 			rmp->mp_flags &= ~REPLY;
 | |
| 		}
 | |
| 	}
 | |
|   }
 | |
|   return(OK);
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				get_work				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE void get_work()
 | |
| {
 | |
| /* Wait for the next message and extract useful information from it. */
 | |
|   if (receive(ANY, &m_in) != OK)
 | |
| 	panic(__FILE__,"PM receive error", NO_NUM);
 | |
|   who_e = m_in.m_source;	/* who sent the message */
 | |
|   if(pm_isokendpt(who_e, &who_p) != OK)
 | |
| 	panic(__FILE__, "PM got message from invalid endpoint", who_e);
 | |
|   call_nr = m_in.m_type;	/* system call number */
 | |
| 
 | |
|   /* Process slot of caller. Misuse PM's own process slot if the kernel is
 | |
|    * calling. This can happen in case of synchronous alarms (CLOCK) or or 
 | |
|    * event like pending kernel signals (SYSTEM).
 | |
|    */
 | |
|   mp = &mproc[who_p < 0 ? PM_PROC_NR : who_p];
 | |
|   if(who_p >= 0 && mp->mp_endpoint != who_e) {
 | |
| 	panic(__FILE__, "PM endpoint number out of sync with source",
 | |
| 		mp->mp_endpoint);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				setreply				     *
 | |
|  *===========================================================================*/
 | |
| PUBLIC void setreply(proc_nr, result)
 | |
| int proc_nr;			/* process to reply to */
 | |
| int result;			/* result of call (usually OK or error #) */
 | |
| {
 | |
| /* Fill in a reply message to be sent later to a user process.  System calls
 | |
|  * may occasionally fill in other fields, this is only for the main return
 | |
|  * value, and for setting the "must send reply" flag.
 | |
|  */
 | |
|   register struct mproc *rmp = &mproc[proc_nr];
 | |
| 
 | |
|   if(proc_nr < 0 || proc_nr >= NR_PROCS)
 | |
|       panic(__FILE__,"setreply arg out of range", proc_nr);
 | |
| 
 | |
|   rmp->mp_reply.reply_res = result;
 | |
|   rmp->mp_flags |= REPLY;	/* reply pending */
 | |
| 
 | |
|   if (rmp->mp_flags & ONSWAP)
 | |
| 	swap_inqueue(rmp);	/* must swap this process back in */
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				pm_init					     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE void pm_init()
 | |
| {
 | |
| /* Initialize the process manager. 
 | |
|  * Memory use info is collected from the boot monitor, the kernel, and
 | |
|  * all processes compiled into the system image. Initially this information
 | |
|  * is put into an array mem_chunks. Elements of mem_chunks are struct memory,
 | |
|  * and hold base, size pairs in units of clicks. This array is small, there
 | |
|  * should be no more than 8 chunks. After the array of chunks has been built
 | |
|  * the contents are used to initialize the hole list. Space for the hole list
 | |
|  * is reserved as an array with twice as many elements as the maximum number
 | |
|  * of processes allowed. It is managed as a linked list, and elements of the
 | |
|  * array are struct hole, which, in addition to storage for a base and size in 
 | |
|  * click units also contain space for a link, a pointer to another element.
 | |
| */
 | |
|   int s;
 | |
|   static struct boot_image image[NR_BOOT_PROCS];
 | |
|   register struct boot_image *ip;
 | |
|   static char core_sigs[] = { SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
 | |
| 			SIGEMT, SIGFPE, SIGUSR1, SIGSEGV, SIGUSR2 };
 | |
|   static char ign_sigs[] = { SIGCHLD, SIGWINCH, SIGCONT };
 | |
|   static char mess_sigs[] = { SIGTERM, SIGHUP, SIGABRT, SIGQUIT };
 | |
|   register struct mproc *rmp;
 | |
|   register int i;
 | |
|   register char *sig_ptr;
 | |
|   phys_clicks total_clicks, minix_clicks, free_clicks;
 | |
|   message mess;
 | |
|   struct mem_map mem_map[NR_LOCAL_SEGS];
 | |
|   struct memory mem_chunks[NR_MEMS];
 | |
| 
 | |
|   /* Initialize process table, including timers. */
 | |
|   for (rmp=&mproc[0]; rmp<&mproc[NR_PROCS]; rmp++) {
 | |
| 	tmr_inittimer(&rmp->mp_timer);
 | |
|   }
 | |
| 
 | |
|   /* Build the set of signals which cause core dumps, and the set of signals
 | |
|    * that are by default ignored.
 | |
|    */
 | |
|   sigemptyset(&core_sset);
 | |
|   for (sig_ptr = core_sigs; sig_ptr < core_sigs+sizeof(core_sigs); sig_ptr++)
 | |
| 	sigaddset(&core_sset, *sig_ptr);
 | |
|   sigemptyset(&ign_sset);
 | |
|   for (sig_ptr = ign_sigs; sig_ptr < ign_sigs+sizeof(ign_sigs); sig_ptr++)
 | |
| 	sigaddset(&ign_sset, *sig_ptr);
 | |
| 
 | |
|   /* Obtain a copy of the boot monitor parameters and the kernel info struct.  
 | |
|    * Parse the list of free memory chunks. This list is what the boot monitor 
 | |
|    * reported, but it must be corrected for the kernel and system processes.
 | |
|    */
 | |
|   if ((s=sys_getmonparams(monitor_params, sizeof(monitor_params))) != OK)
 | |
|       panic(__FILE__,"get monitor params failed",s);
 | |
|   get_mem_chunks(mem_chunks);
 | |
|   if ((s=sys_getkinfo(&kinfo)) != OK)
 | |
|       panic(__FILE__,"get kernel info failed",s);
 | |
| 
 | |
|   /* Get the memory map of the kernel to see how much memory it uses. */
 | |
|   if ((s=get_mem_map(SYSTASK, mem_map)) != OK)
 | |
|   	panic(__FILE__,"couldn't get memory map of SYSTASK",s);
 | |
|   minix_clicks = (mem_map[S].mem_phys+mem_map[S].mem_len)-mem_map[T].mem_phys;
 | |
|   patch_mem_chunks(mem_chunks, mem_map);
 | |
| 
 | |
|   /* Initialize PM's process table. Request a copy of the system image table 
 | |
|    * that is defined at the kernel level to see which slots to fill in.
 | |
|    */
 | |
|   if (OK != (s=sys_getimage(image))) 
 | |
|   	panic(__FILE__,"couldn't get image table: %d\n", s);
 | |
|   procs_in_use = 0;				/* start populating table */
 | |
|   printf("Building process table:");		/* show what's happening */
 | |
|   for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) {		
 | |
|   	if (ip->proc_nr >= 0) {			/* task have negative nrs */
 | |
|   		procs_in_use += 1;		/* found user process */
 | |
| 
 | |
| 		/* Set process details found in the image table. */
 | |
| 		rmp = &mproc[ip->proc_nr];	
 | |
|   		strncpy(rmp->mp_name, ip->proc_name, PROC_NAME_LEN); 
 | |
| 		rmp->mp_parent = RS_PROC_NR;
 | |
| 		rmp->mp_nice = get_nice_value(ip->priority);
 | |
|   		sigemptyset(&rmp->mp_sig2mess);
 | |
|   		sigemptyset(&rmp->mp_ignore);	
 | |
|   		sigemptyset(&rmp->mp_sigmask);
 | |
|   		sigemptyset(&rmp->mp_catch);
 | |
| 		if (ip->proc_nr == INIT_PROC_NR) {	/* user process */
 | |
|   			rmp->mp_procgrp = rmp->mp_pid = INIT_PID;
 | |
| 			rmp->mp_flags |= IN_USE; 
 | |
| 		}
 | |
| 		else {					/* system process */
 | |
|   			rmp->mp_pid = get_free_pid();
 | |
| 			rmp->mp_flags |= IN_USE | DONT_SWAP | PRIV_PROC; 
 | |
|   			for (sig_ptr = mess_sigs; 
 | |
| 				sig_ptr < mess_sigs+sizeof(mess_sigs); 
 | |
| 				sig_ptr++)
 | |
| 			sigaddset(&rmp->mp_sig2mess, *sig_ptr);
 | |
| 		}
 | |
| 
 | |
| 		/* Get kernel endpoint identifier. */
 | |
| 		rmp->mp_endpoint = ip->endpoint;
 | |
| 
 | |
|   		/* Get memory map for this process from the kernel. */
 | |
| 		if ((s=get_mem_map(ip->proc_nr, rmp->mp_seg)) != OK)
 | |
|   			panic(__FILE__,"couldn't get process entry",s);
 | |
| 		if (rmp->mp_seg[T].mem_len != 0) rmp->mp_flags |= SEPARATE;
 | |
| 		minix_clicks += rmp->mp_seg[S].mem_phys + 
 | |
| 			rmp->mp_seg[S].mem_len - rmp->mp_seg[T].mem_phys;
 | |
|   		patch_mem_chunks(mem_chunks, rmp->mp_seg);
 | |
| 
 | |
| 		/* Tell FS about this system process. */
 | |
| 		mess.PR_SLOT = ip->proc_nr;
 | |
| 		mess.PR_PID = rmp->mp_pid;
 | |
| 		mess.PR_ENDPT = rmp->mp_endpoint;
 | |
|   		if (OK != (s=send(FS_PROC_NR, &mess)))
 | |
| 			panic(__FILE__,"can't sync up with FS", s);
 | |
|   		printf(" %s", ip->proc_name);	/* display process name */
 | |
|   	}
 | |
|   }
 | |
|   printf(".\n");				/* last process done */
 | |
| 
 | |
|   /* Override some details. INIT, PM, FS and RS are somewhat special. */
 | |
|   mproc[PM_PROC_NR].mp_pid = PM_PID;		/* PM has magic pid */
 | |
|   mproc[RS_PROC_NR].mp_parent = INIT_PROC_NR;	/* INIT is root */
 | |
|   sigfillset(&mproc[PM_PROC_NR].mp_ignore); 	/* guard against signals */
 | |
| 
 | |
|   /* Tell FS that no more system processes follow and synchronize. */
 | |
|   mess.PR_ENDPT = NONE;
 | |
|   if (sendrec(FS_PROC_NR, &mess) != OK || mess.m_type != OK)
 | |
| 	panic(__FILE__,"can't sync up with FS", NO_NUM);
 | |
| 
 | |
| #if ENABLE_BOOTDEV
 | |
|   /* Possibly we must correct the memory chunks for the boot device. */
 | |
|   if (kinfo.bootdev_size > 0) {
 | |
|       mem_map[T].mem_phys = kinfo.bootdev_base >> CLICK_SHIFT;
 | |
|       mem_map[T].mem_len = 0;
 | |
|       mem_map[D].mem_len = (kinfo.bootdev_size+CLICK_SIZE-1) >> CLICK_SHIFT;
 | |
|       patch_mem_chunks(mem_chunks, mem_map);
 | |
|   }
 | |
| #endif /* ENABLE_BOOTDEV */
 | |
| 
 | |
|   /* Withhold some memory from x86 VM */
 | |
|   do_x86_vm(mem_chunks);
 | |
| 
 | |
|   /* Initialize tables to all physical memory and print memory information. */
 | |
|   printf("Physical memory:");
 | |
|   mem_init(mem_chunks, &free_clicks);
 | |
|   total_clicks = minix_clicks + free_clicks;
 | |
|   printf(" total %u KB,", click_to_round_k(total_clicks));
 | |
|   printf(" system %u KB,", click_to_round_k(minix_clicks));
 | |
|   printf(" free %u KB.\n", click_to_round_k(free_clicks));
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				get_nice_value				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE int get_nice_value(queue)
 | |
| int queue;				/* store mem chunks here */
 | |
| {
 | |
| /* Processes in the boot image have a priority assigned. The PM doesn't know
 | |
|  * about priorities, but uses 'nice' values instead. The priority is between 
 | |
|  * MIN_USER_Q and MAX_USER_Q. We have to scale between PRIO_MIN and PRIO_MAX.
 | |
|  */ 
 | |
|   int nice_val = (queue - USER_Q) * (PRIO_MAX-PRIO_MIN+1) / 
 | |
|       (MIN_USER_Q-MAX_USER_Q+1);
 | |
|   if (nice_val > PRIO_MAX) nice_val = PRIO_MAX;	/* shouldn't happen */
 | |
|   if (nice_val < PRIO_MIN) nice_val = PRIO_MIN;	/* shouldn't happen */
 | |
|   return nice_val;
 | |
| }
 | |
| 
 | |
| #if _WORD_SIZE == 2
 | |
| /* In real mode only 1M can be addressed, and in 16-bit protected we can go
 | |
|  * no further than we can count in clicks.  (The 286 is further limited by
 | |
|  * its 24 bit address bus, but we can assume in that case that no more than
 | |
|  * 16M memory is reported by the BIOS.)
 | |
|  */
 | |
| #define MAX_REAL	0x00100000L
 | |
| #define MAX_16BIT	(0xFFF0L << CLICK_SHIFT)
 | |
| #endif
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				get_mem_chunks				     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE void get_mem_chunks(mem_chunks)
 | |
| struct memory *mem_chunks;			/* store mem chunks here */
 | |
| {
 | |
| /* Initialize the free memory list from the 'memory' boot variable.  Translate
 | |
|  * the byte offsets and sizes in this list to clicks, properly truncated. Also
 | |
|  * make sure that we don't exceed the maximum address space of the 286 or the
 | |
|  * 8086, i.e. when running in 16-bit protected mode or real mode.
 | |
|  */
 | |
|   long base, size, limit;
 | |
|   char *s, *end;			/* use to parse boot variable */ 
 | |
|   int i, done = 0;
 | |
|   struct memory *memp;
 | |
| #if _WORD_SIZE == 2
 | |
|   unsigned long max_address;
 | |
|   struct machine machine;
 | |
|   if (OK != (i=sys_getmachine(&machine)))
 | |
| 	panic(__FILE__, "sys_getmachine failed", i);
 | |
| #endif
 | |
| 
 | |
|   /* Initialize everything to zero. */
 | |
|   for (i = 0; i < NR_MEMS; i++) {
 | |
| 	memp = &mem_chunks[i];		/* next mem chunk is stored here */
 | |
| 	memp->base = memp->size = 0;
 | |
|   }
 | |
|   
 | |
|   /* The available memory is determined by MINIX' boot loader as a list of 
 | |
|    * (base:size)-pairs in boothead.s. The 'memory' boot variable is set in
 | |
|    * in boot.s.  The format is "b0:s0,b1:s1,b2:s2", where b0:s0 is low mem,
 | |
|    * b1:s1 is mem between 1M and 16M, b2:s2 is mem above 16M. Pairs b1:s1 
 | |
|    * and b2:s2 are combined if the memory is adjacent. 
 | |
|    */
 | |
|   s = find_param("memory");		/* get memory boot variable */
 | |
|   for (i = 0; i < NR_MEMS && !done; i++) {
 | |
| 	memp = &mem_chunks[i];		/* next mem chunk is stored here */
 | |
| 	base = size = 0;		/* initialize next base:size pair */
 | |
| 	if (*s != 0) {			/* get fresh data, unless at end */	
 | |
| 
 | |
| 	    /* Read fresh base and expect colon as next char. */ 
 | |
| 	    base = strtoul(s, &end, 0x10);		/* get number */
 | |
| 	    if (end != s && *end == ':') s = ++end;	/* skip ':' */ 
 | |
| 	    else *s=0;			/* terminate, should not happen */
 | |
| 
 | |
| 	    /* Read fresh size and expect comma or assume end. */ 
 | |
| 	    size = strtoul(s, &end, 0x10);		/* get number */
 | |
| 	    if (end != s && *end == ',') s = ++end;	/* skip ',' */
 | |
| 	    else done = 1;
 | |
| 	}
 | |
| 	limit = base + size;	
 | |
| #if _WORD_SIZE == 2
 | |
| 	max_address = machine.protected ? MAX_16BIT : MAX_REAL;
 | |
| 	if (limit > max_address) limit = max_address;
 | |
| #endif
 | |
| 	base = (base + CLICK_SIZE-1) & ~(long)(CLICK_SIZE-1);
 | |
| 	limit &= ~(long)(CLICK_SIZE-1);
 | |
| 	if (limit <= base) continue;
 | |
| 	memp->base = base >> CLICK_SHIFT;
 | |
| 	memp->size = (limit - base) >> CLICK_SHIFT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*===========================================================================*
 | |
|  *				patch_mem_chunks			     *
 | |
|  *===========================================================================*/
 | |
| PRIVATE void patch_mem_chunks(mem_chunks, map_ptr)
 | |
| struct memory *mem_chunks;			/* store mem chunks here */
 | |
| struct mem_map *map_ptr;			/* memory to remove */
 | |
| {
 | |
| /* Remove server memory from the free memory list. The boot monitor
 | |
|  * promises to put processes at the start of memory chunks. The 
 | |
|  * tasks all use same base address, so only the first task changes
 | |
|  * the memory lists. The servers and init have their own memory
 | |
|  * spaces and their memory will be removed from the list. 
 | |
|  */
 | |
|   struct memory *memp;
 | |
|   for (memp = mem_chunks; memp < &mem_chunks[NR_MEMS]; memp++) {
 | |
| 	if (memp->base == map_ptr[T].mem_phys) {
 | |
| 		memp->base += map_ptr[T].mem_len + map_ptr[D].mem_len;
 | |
| 		memp->size -= map_ptr[T].mem_len + map_ptr[D].mem_len;
 | |
| 	}
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define PAGE_SIZE	4096
 | |
| #define PAGE_TABLE_COVER (1024*PAGE_SIZE)
 | |
| /*=========================================================================*
 | |
|  *				do_x86_vm				   *
 | |
|  *=========================================================================*/
 | |
| PRIVATE void do_x86_vm(mem_chunks)
 | |
| struct memory mem_chunks[NR_MEMS];
 | |
| {
 | |
| 	phys_bytes high, bytes;
 | |
| 	phys_clicks clicks, base_click;
 | |
| 	unsigned pages;
 | |
| 	int i, r;
 | |
| 
 | |
| 	/* Compute the highest memory location */
 | |
| 	high= 0;
 | |
| 	for (i= 0; i<NR_MEMS; i++)
 | |
| 	{
 | |
| 		if (mem_chunks[i].size == 0)
 | |
| 			continue;
 | |
| 		if (mem_chunks[i].base + mem_chunks[i].size > high)
 | |
| 			high= mem_chunks[i].base + mem_chunks[i].size;
 | |
| 	}
 | |
| 
 | |
| 	high <<= CLICK_SHIFT;
 | |
| #if VERBOSE_VM
 | |
| 	printf("do_x86_vm: found high 0x%x\n", high);
 | |
| #endif
 | |
| 
 | |
| 	/* The number of pages we need is one for the page directory, enough
 | |
| 	 * page tables to cover the memory, and one page for alignement.
 | |
| 	 */
 | |
| 	pages= 1 + (high + PAGE_TABLE_COVER-1)/PAGE_TABLE_COVER + 1;
 | |
| 	bytes= pages*PAGE_SIZE;
 | |
| 	clicks= (bytes + CLICK_SIZE-1) >> CLICK_SHIFT;
 | |
| 
 | |
| #if VERBOSE_VM
 | |
| 	printf("do_x86_vm: need %d pages\n", pages);
 | |
| 	printf("do_x86_vm: need %d bytes\n", bytes);
 | |
| 	printf("do_x86_vm: need %d clicks\n", clicks);
 | |
| #endif
 | |
| 
 | |
| 	for (i= 0; i<NR_MEMS; i++)
 | |
| 	{
 | |
| 		if (mem_chunks[i].size <= clicks)
 | |
| 			continue;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (i >= NR_MEMS)
 | |
| 		panic("PM", "not enough memory for VM page tables?", NO_NUM);
 | |
| 	base_click= mem_chunks[i].base;
 | |
| 	mem_chunks[i].base += clicks;
 | |
| 	mem_chunks[i].size -= clicks;
 | |
| 
 | |
| #if VERBOSE_VM
 | |
| 	printf("do_x86_vm: using 0x%x clicks @ 0x%x\n", clicks, base_click);
 | |
| #endif
 | |
| 	r= sys_vm_setbuf(base_click << CLICK_SHIFT, clicks << CLICK_SHIFT,
 | |
| 		high);
 | |
| 	if (r != 0)
 | |
| 		printf("do_x86_vm: sys_vm_setbuf failed: %d\n", r);
 | |
| }
 |