ClassiCube/ClassicalSharp/Generator/NotchyGenerator.cs
CybertronicToon 5b3544983a Made mushroom generation account for depth
Made mushroom generation account for depth, makes mushrooms much more common , and closer to vanilla. Partially addresses #84
2017-01-26 03:51:07 -06:00

393 lines
12 KiB
C#

// Copyright 2014-2017 ClassicalSharp | Licensed under BSD-3
// Based on:
// https://github.com/UnknownShadow200/ClassicalSharp/wiki/Minecraft-Classic-map-generation-algorithm
// Thanks to Jerralish for originally reverse engineering classic's algorithm, then preparing a high level overview of the algorithm.
// I believe this process adheres to clean room reverse engineering.
using System;
using System.Collections.Generic;
namespace ClassicalSharp.Generator {
public sealed partial class NotchyGenerator : IMapGenerator {
int width, height, length;
int waterLevel, oneY;
byte[] blocks;
short[] heightmap;
JavaRandom rnd;
public override string GeneratorName { get { return "Vanilla classic"; } }
public override byte[] Generate(int width, int height, int length, int seed) {
this.width = width;
this.height = height;
this.length = length;
oneY = width * length;
waterLevel = height / 2;
blocks = new byte[width * height * length];
rnd = new JavaRandom(seed);
CreateHeightmap();
CreateStrata();
CarveCaves();
CarveOreVeins(0.9f, "coal ore", Block.CoalOre);
CarveOreVeins(0.7f, "iron ore", Block.IronOre);
CarveOreVeins(0.5f, "gold ore", Block.GoldOre);
FloodFillWaterBorders();
FloodFillWater();
FloodFillLava();
CreateSurfaceLayer();
PlantFlowers();
PlantMushrooms();
PlantTrees();
return blocks;
}
void CreateHeightmap() {
Noise n1 = new CombinedNoise(
new OctaveNoise(8, rnd), new OctaveNoise(8, rnd));
Noise n2 = new CombinedNoise(
new OctaveNoise(8, rnd), new OctaveNoise(8, rnd));
Noise n3 = new OctaveNoise(6, rnd);
int index = 0;
short[] hMap = new short[width * length];
CurrentState = "Building heightmap";
for (int z = 0; z < length; z++) {
CurrentProgress = (float)z / length;
for (int x = 0; x < width; x++) {
double hLow = n1.Compute(x * 1.3f, z * 1.3f) / 6 - 4;
double hHigh = n2.Compute(x * 1.3f, z * 1.3f) / 5 + 6;
double height = n3.Compute(x, z) > 0 ? hLow : Math.Max(hLow, hHigh);
height *= 0.5;
if (height < 0) height *= 0.8f;
hMap[index++] = (short)(height + waterLevel);
}
}
heightmap = hMap;
}
void CreateStrata() {
Noise n = new OctaveNoise(8, rnd);
CurrentState = "Creating strata";
int hMapIndex = 0;
for (int z = 0; z < length; z++) {
CurrentProgress = (float)z / length;
for (int x = 0; x < width; x++) {
int dirtThickness = (int)(n.Compute(x, z) / 24 - 4);
int dirtHeight = heightmap[hMapIndex++];
int stoneHeight = dirtHeight + dirtThickness;
int mapIndex = z * width + x;
blocks[mapIndex] = Block.Lava;
mapIndex += oneY;
for (int y = 1; y < height; y++) {
byte block = 0;
if (y <= stoneHeight) block = Block.Stone;
else if (y <= dirtHeight) block = Block.Dirt;
blocks[mapIndex] = block;
mapIndex += oneY;
}
}
}
}
void CarveCaves() {
int cavesCount = blocks.Length / 8192;
CurrentState = "Carving caves";
for (int i = 0; i < cavesCount; i++) {
CurrentProgress = (float)i / cavesCount;
double caveX = rnd.Next(width);
double caveY = rnd.Next(height);
double caveZ = rnd.Next(length);
int caveLen = (int)(rnd.NextFloat() * rnd.NextFloat() * 200);
double theta = rnd.NextFloat() * 2 * Math.PI, deltaTheta = 0;
double phi = rnd.NextFloat() * 2 * Math.PI, deltaPhi = 0;
double caveRadius = rnd.NextFloat() * rnd.NextFloat();
for (int j = 0; j < caveLen; j++) {
caveX += Math.Sin(theta) * Math.Cos(phi);
caveY += Math.Cos(theta) * Math.Cos(phi);
caveZ += Math.Sin(phi);
theta = theta + deltaTheta * 0.2;
deltaTheta = deltaTheta * 0.9 + rnd.NextFloat() - rnd.NextFloat();
phi = phi / 2 + deltaPhi / 4;
deltaPhi = deltaPhi * 0.75 + rnd.NextFloat() - rnd.NextFloat();
if (rnd.NextFloat() < 0.25) continue;
int cenX = (int)(caveX + (rnd.Next(4) - 2) * 0.2);
int cenY = (int)(caveY + (rnd.Next(4) - 2) * 0.2);
int cenZ = (int)(caveZ + (rnd.Next(4) - 2) * 0.2);
double radius = (height - cenY) / (double)height;
radius = 1.2 + (radius * 3.5 + 1) * caveRadius;
radius = radius + Math.Sin(j * Math.PI / caveLen);
FillOblateSpheroid(cenX, cenY, cenZ, (float)radius, Block.Air);
}
}
}
void CarveOreVeins(float abundance, string blockName, byte block) {
int numVeins = (int)(blocks.Length * abundance / 16384);
CurrentState = "Carving " + blockName;
for (int i = 0; i < numVeins; i++) {
CurrentProgress = (float)i / numVeins;
double veinX = rnd.Next(width);
double veinY = rnd.Next(height);
double veinZ = rnd.Next(length);
int veinLen = (int)(rnd.NextFloat() * rnd.NextFloat() * 75 * abundance);
double theta = rnd.NextFloat() * 2 * Math.PI, deltaTheta = 0;
double phi = rnd.NextFloat() * 2 * Math.PI, deltaPhi = 0;
for (int j = 0; j < veinLen; j++) {
veinX += Math.Sin(theta) * Math.Cos(phi);
veinY += Math.Cos(theta) * Math.Cos(phi);
veinZ += Math.Sin(phi);
theta = deltaTheta * 0.2;
deltaTheta = deltaTheta * 0.9 + rnd.NextFloat() - rnd.NextFloat();
phi = phi / 2 + deltaPhi / 4;
deltaPhi = deltaPhi * 0.9 + rnd.NextFloat() - rnd.NextFloat();
float radius = abundance * (float)Math.Sin(j * Math.PI / veinLen) + 1;
FillOblateSpheroid((int)veinX, (int)veinY, (int)veinZ, radius, block);
}
}
}
void FloodFillWaterBorders() {
int waterY = waterLevel - 1;
int index1 = (waterY * length + 0) * width + 0;
int index2 = (waterY * length + (length - 1)) * width + 0;
CurrentState = "Flooding edge water";
for (int x = 0; x < width; x++) {
CurrentProgress = 0 + ((float)x / width) * 0.5f;
FloodFill(index1, Block.Water);
FloodFill(index2, Block.Water);
index1++; index2++;
}
index1 = (waterY * length + 0) * width + 0;
index2 = (waterY * length + 0) * width + (width - 1);
for (int z = 0; z < length; z++) {
CurrentProgress = 0.5f + ((float)z / length) * 0.5f;
FloodFill(index1, Block.Water);
FloodFill(index2, Block.Water);
index1 += width; index2 += width;
}
}
void FloodFillWater() {
int numSources = width * length / 800;
CurrentState = "Flooding water";
for (int i = 0; i < numSources; i++) {
CurrentProgress = (float)i / numSources;
int x = rnd.Next(width), z = rnd.Next(length);
int y = waterLevel - rnd.Next(1, 3);
FloodFill((y * length + z) * width + x, Block.Water);
}
}
void FloodFillLava() {
int numSources = width * length / 20000;
CurrentState = "Flooding lava";
for (int i = 0; i < numSources; i++) {
CurrentProgress = (float)i / numSources;
int x = rnd.Next(width), z = rnd.Next(length);
int y = (int)((waterLevel - 3) * rnd.NextFloat() * rnd.NextFloat());
FloodFill((y * length + z) * width + x, Block.Lava);
}
}
void CreateSurfaceLayer() {
Noise n1 = new OctaveNoise(8, rnd), n2 = new OctaveNoise(8, rnd);
CurrentState = "Creating surface";
// TODO: update heightmap
int hMapIndex = 0;
for (int z = 0; z < length; z++) {
CurrentProgress = (float)z / length;
for (int x = 0; x < width; x++) {
bool sand = n1.Compute(x, z) > 8;
bool gravel = n2.Compute(x, z) > 12;
int y = heightmap[hMapIndex++];
if (y >= height) continue;
int index = (y * length + z) * width + x;
byte blockAbove = y >= (height - 1) ? Block.Air : blocks[index + oneY];
if (blockAbove == Block.Water && gravel) {
blocks[index] = Block.Gravel;
} else if (blockAbove == Block.Air) {
blocks[index] = (y <= waterLevel && sand) ? Block.Sand : Block.Grass;
}
}
}
}
void PlantFlowers() {
int numPatches = width * length / 3000;
CurrentState = "Planting flowers";
for (int i = 0; i < numPatches; i++) {
CurrentProgress = (float)i / numPatches;
byte type = (byte)(Block.Dandelion + rnd.Next(2));
int patchX = rnd.Next(width), patchZ = rnd.Next(length);
for (int j = 0; j < 10; j++) {
int flowerX = patchX, flowerZ = patchZ;
for (int k = 0; k < 5; k++) {
flowerX += rnd.Next(6) - rnd.Next(6);
flowerZ += rnd.Next(6) - rnd.Next(6);
if (flowerX < 0 || flowerZ < 0 || flowerX >= width || flowerZ >= length)
continue;
int flowerY = heightmap[flowerZ * width + flowerX] + 1;
int index = (flowerY * length + flowerZ) * width + flowerX;
if (blocks[index] == Block.Air && blocks[index - oneY] == Block.Grass)
blocks[index] = type;
}
}
}
}
void PlantMushrooms() {
int numPatches = width * length * height / 2000;
CurrentState = "Planting mushrooms";
for (int i = 0; i < numPatches; i++) {
CurrentProgress = (float)i / numPatches;
byte type = (byte)(Block.BrownMushroom + rnd.Next(2));
int patchX = rnd.Next(width);
int patchY = rnd.Next(height);
int patchZ = rnd.Next(length);
for (int j = 0; j < 20; j++) {
int mushX = patchX, mushY = patchY, mushZ = patchZ;
for (int k = 0; k < 5; k++) {
mushX += rnd.Next(6) - rnd.Next(6);
mushZ += rnd.Next(6) - rnd.Next(6);
if (mushX < 0 || mushZ < 0 || mushX >= width || mushZ >= length)
continue;
int solidHeight = heightmap[mushZ * width + mushX];
if (mushY >= (solidHeight - 1))
continue;
int index = (mushY * length + mushZ) * width + mushX;
if (blocks[index] == Block.Air && blocks[index - oneY] == Block.Stone)
blocks[index] = type;
}
}
}
}
void PlantTrees() {
int numPatches = width * length / 4000;
CurrentState = "Planting trees";
for (int i = 0; i < numPatches; i++) {
CurrentProgress = (float)i / numPatches;
int patchX = rnd.Next(width), patchZ = rnd.Next(length);
for (int j = 0; j < 20; j++) {
int treeX = patchX, treeZ = patchZ;
for (int k = 0; k < 20; k++) {
treeX += rnd.Next(6) - rnd.Next(6);
treeZ += rnd.Next(6) - rnd.Next(6);
if (treeX < 0 || treeZ < 0 || treeX >= width ||
treeZ >= length || rnd.NextFloat() >= 0.25)
continue;
int treeY = heightmap[treeZ * width + treeX] + 1;
int treeHeight = 5 + rnd.Next(3);
if (CanGrowTree(treeX, treeY, treeZ, treeHeight)) {
GrowTree(treeX, treeY, treeZ, treeHeight);
}
}
}
}
}
bool CanGrowTree(int treeX, int treeY, int treeZ, int treeHeight) {
// check tree base
int baseHeight = treeHeight - 4;
for (int y = treeY; y < treeY + baseHeight; y++)
for (int z = treeZ - 1; z <= treeZ + 1; z++)
for (int x = treeX - 1; x <= treeX + 1; x++)
{
if (x < 0 || y < 0 || z < 0 || x >= width || y >= height || z >= length)
return false;
int index = (y * length + z) * width + x;
if (blocks[index] != 0) return false;
}
// and also check canopy
for (int y = treeY + baseHeight; y < treeY + treeHeight; y++)
for (int z = treeZ - 2; z <= treeZ + 2; z++)
for (int x = treeX - 2; x <= treeX + 2; x++)
{
if (x < 0 || y < 0 || z < 0 || x >= width || y >= height || z >= length)
return false;
int index = (y * length + z) * width + x;
if (blocks[index] != 0) return false;
}
return true;
}
void GrowTree(int treeX, int treeY, int treeZ, int height) {
int baseHeight = height - 4;
int index = 0;
// leaves bottom layer
for (int y = treeY + baseHeight; y < treeY + baseHeight + 2; y++)
for (int zz = -2; zz <= 2; zz++)
for (int xx = -2; xx <= 2; xx++)
{
int x = xx + treeX, z = zz + treeZ;
index = (y * length + z) * width + x;
if (Math.Abs(xx) == 2 && Math.Abs(zz) == 2) {
if (rnd.NextFloat() >= 0.5)
blocks[index] = Block.Leaves;
} else {
blocks[index] = Block.Leaves;
}
}
// leaves top layer
int bottomY = treeY + baseHeight + 2;
for (int y = treeY + baseHeight + 2; y < treeY + height; y++)
for (int zz = -1; zz <= 1; zz++)
for (int xx = -1; xx <= 1; xx++)
{
int x = xx + treeX, z = zz + treeZ;
index = (y * length + z) * width + x;
if (xx == 0 || zz == 0) {
blocks[index] = Block.Leaves;
} else if (y == bottomY && rnd.NextFloat() >= 0.5) {
blocks[index] = Block.Leaves;
}
}
// then place trunk
index = (treeY * length + treeZ) * width + treeX;
for (int y = 0; y < height - 1; y++) {
blocks[index] = Block.Log;
index += oneY;
}
}
}
}