panda3d/panda/src/distort/projectionScreen.cxx

688 lines
26 KiB
C++

// Filename: projectionScreen.cxx
// Created by: drose (11Dec01)
//
////////////////////////////////////////////////////////////////////
//
// PANDA 3D SOFTWARE
// Copyright (c) 2001 - 2004, Disney Enterprises, Inc. All rights reserved
//
// All use of this software is subject to the terms of the Panda 3d
// Software license. You should have received a copy of this license
// along with this source code; you will also find a current copy of
// the license at http://etc.cmu.edu/panda3d/docs/license/ .
//
// To contact the maintainers of this program write to
// panda3d-general@lists.sourceforge.net .
//
////////////////////////////////////////////////////////////////////
#include "projectionScreen.h"
#include "geomNode.h"
#include "geom.h"
#include "geomTristrip.h"
#include "transformState.h"
#include "workingNodePath.h"
#include "switchNode.h"
TypeHandle ProjectionScreen::_type_handle;
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::Constructor
// Access: Published
// Description:
////////////////////////////////////////////////////////////////////
ProjectionScreen::
ProjectionScreen(const string &name) : PandaNode(name)
{
_invert_uvs = project_invert_uvs;
_vignette_on = false;
_vignette_color.set(0.0f, 0.0f, 0.0f, 1.0f);
_frame_color.set(1.0f, 1.0f, 1.0f, 1.0f);
_computed_rel_top_mat = false;
_stale = true;
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::Destructor
// Access: Public, Virtual
// Description:
////////////////////////////////////////////////////////////////////
ProjectionScreen::
~ProjectionScreen() {
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::Copy Constructor
// Access: Protected
// Description:
////////////////////////////////////////////////////////////////////
ProjectionScreen::
ProjectionScreen(const ProjectionScreen &copy) :
PandaNode(copy),
_projector(copy._projector),
_projector_node(copy._projector_node),
_vignette_on(copy._vignette_on),
_vignette_color(copy._vignette_color),
_frame_color(copy._frame_color)
{
_computed_rel_top_mat = false;
_stale = true;
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::make_copy
// Access: Public, Virtual
// Description: Returns a newly-allocated Node that is a shallow copy
// of this one. It will be a different Node pointer,
// but its internal data may or may not be shared with
// that of the original Node.
////////////////////////////////////////////////////////////////////
PandaNode *ProjectionScreen::
make_copy() const {
return new ProjectionScreen(*this);
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::has_cull_callback
// Access: Public, Virtual
// Description: Should be overridden by derived classes to return
// true if cull_callback() has been defined. Otherwise,
// returns false to indicate cull_callback() does not
// need to be called for this node during the cull
// traversal.
////////////////////////////////////////////////////////////////////
bool ProjectionScreen::
has_cull_callback() const {
return true;
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::cull_callback
// Access: Public, Virtual
// Description: If has_cull_callback() returns true, this function
// will be called during the cull traversal to perform
// any additional operations that should be performed at
// cull time. This may include additional manipulation
// of render state or additional visible/invisible
// decisions, or any other arbitrary operation.
//
// By the time this function is called, the node has
// already passed the bounding-volume test for the
// viewing frustum, and the node's transform and state
// have already been applied to the indicated
// CullTraverserData object.
//
// The return value is true if this node should be
// visible, or false if it should be culled.
////////////////////////////////////////////////////////////////////
bool ProjectionScreen::
cull_callback(CullTraverser *, CullTraverserData &) {
recompute_if_stale();
return true;
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::set_projector
// Access: Published
// Description: Specifies the LensNode that is to serve as the
// projector for this screen. The relative position of
// the LensNode to the ProjectionScreen, as well as the
// properties of the lens associated with the LensNode,
// determines the UV's that will be assigned to the
// geometry within the ProjectionScreen.
//
// The NodePath must refer to a LensNode (or a Camera).
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
set_projector(const NodePath &projector) {
_projector_node = (LensNode *)NULL;
_projector = projector;
if (!projector.is_empty()) {
nassertv(projector.node()->is_of_type(LensNode::get_class_type()));
_projector_node = DCAST(LensNode, projector.node());
_stale = true;
}
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::generate_screen
// Access: Published
// Description: Synthesizes a polygon mesh based on the projection
// area of the indicated projector. This generates and
// returns a new GeomNode but does not automatically
// parent it to the ProjectionScreen node; see
// regenerate_screen().
//
// The specified projector need not be the same as the
// projector given to the ProjectionScreen with
// set_projector() (although this is often what you
// want).
//
// num_x_verts and num_y_verts specify the number of
// vertices to make in the grid across the horizontal
// and vertical dimension of the projector,
// respectively; distance represents the approximate
// distance of the screen from the lens center.
//
// The fill_ratio parameter specifies the fraction of
// the image to cover. If it is 1.0, the entire image
// is shown full-size; if it is 0.9, 10% of the image
// around the edges is not part of the grid (and the
// grid is drawn smaller by the same 10%). This is
// intended to work around graphics drivers that tend to
// show dark edges or other unsatisfactory artifacts
// around the edges of textures: render the texture
// larger than necessary by a certain fraction, and make
// the screen smaller by the inverse fraction.
////////////////////////////////////////////////////////////////////
PT(GeomNode) ProjectionScreen::
generate_screen(const NodePath &projector, const string &screen_name,
int num_x_verts, int num_y_verts, float distance,
float fill_ratio) {
nassertr(!projector.is_empty() &&
projector.node()->is_of_type(LensNode::get_class_type()),
NULL);
LensNode *projector_node = DCAST(LensNode, projector.node());
nassertr(projector_node->get_lens() != NULL, NULL);
// First, get the relative coordinate space of the projector.
LMatrix4f rel_mat;
NodePath this_np(this);
rel_mat = projector.get_mat(this_np);
// Now compute all the vertices for the screen. These are arranged
// in order from left to right and bottom to top.
int num_verts = num_x_verts * num_y_verts;
Lens *lens = projector_node->get_lens();
float t = (distance - lens->get_near()) / (lens->get_far() - lens->get_near());
PTA_Vertexf coords;
coords.reserve(num_verts);
float x_scale = 2.0f / (num_x_verts - 1);
float y_scale = 2.0f / (num_y_verts - 1);
for (int yi = 0; yi < num_y_verts; yi++) {
for (int xi = 0; xi < num_x_verts; xi++) {
LPoint2f film = LPoint2f((float)xi * x_scale - 1.0f,
(float)yi * y_scale - 1.0f);
// Reduce the image by the fill ratio.
film *= fill_ratio;
LPoint3f near_point, far_point;
lens->extrude(film, near_point, far_point);
LPoint3f point = near_point + t * (far_point - near_point);
point = point * rel_mat;
coords.push_back(point);
}
}
nassertr((int)coords.size() == num_verts, NULL);
// Now synthesize a triangle mesh. We run triangle strips
// horizontally across the grid.
int num_tstrips = (num_y_verts-1);
int tstrip_length = 2*(num_x_verts-1)+2;
PTA_int lengths;
PTA_ushort vindex;
// Set the lengths array. we are creating num_tstrips t-strips,
// each of which has tstrip_length vertices.
lengths.reserve(num_tstrips);
int n;
for (n = 0; n < num_tstrips; n++) {
lengths.push_back(tstrip_length);
}
nassertr((int)lengths.size() == num_tstrips, NULL);
// Now fill up the index array into the vertices. This lays out the
// order of the vertices in each t-strip.
vindex.reserve(num_tstrips * tstrip_length);
n = 0;
int ti, si;
for (ti = 1; ti < num_y_verts; ti++) {
vindex.push_back(ti * num_x_verts);
for (si = 1; si < num_x_verts; si++) {
vindex.push_back((ti - 1) * num_x_verts + (si-1));
vindex.push_back(ti * num_x_verts + si);
}
vindex.push_back((ti - 1) * num_x_verts + (num_x_verts-1));
}
nassertr((int)vindex.size() == num_tstrips * tstrip_length, NULL);
GeomTristrip *geom = new GeomTristrip;
geom->set_num_prims(num_tstrips);
geom->set_lengths(lengths);
geom->set_coords(coords, G_PER_VERTEX, vindex);
// Make it white.
PTA_Colorf colors;
colors.push_back(Colorf(1.0f, 1.0f, 1.0f, 1.0f));
geom->set_colors(colors, G_OVERALL);
// Now create a GeomNode to hold this mesh.
PT(GeomNode) geom_node = new GeomNode(screen_name);
geom_node->add_geom(geom);
_stale = true;
++_last_screen;
return geom_node;
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::regenerate_screen
// Access: Published
// Description: Removes all the children from the ProjectionScreen
// node, and adds the newly generated child returned by
// generate_screen().
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
regenerate_screen(const NodePath &projector, const string &screen_name,
int num_x_verts, int num_y_verts, float distance,
float fill_ratio) {
// First, remove all existing children.
remove_all_children();
// And attach a new child.
PT(GeomNode) geom_node =
generate_screen(projector, screen_name, num_x_verts, num_y_verts,
distance, fill_ratio);
add_child(geom_node);
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::make_flat_mesh
// Access: Published
// Description: Generates a deep copy of the hierarchy at the
// ProjectionScreen node and below, with vertices
// flattened into two dimensions as if they were seen by
// the indicated camera node.
//
// This is useful for rendering an image as seen through
// a non-linear lens. The resulting mesh will have
// vertices in the range [-1, 1] in both x and y, and
// may be then rendered with an ordinary orthographic
// lens, to generate the effect of seeing the image
// through the specified non-linear lens.
//
// The returned node has no parent; it is up to the
// caller to parent it somewhere or store it so that it
// does not get dereferenced and deleted.
////////////////////////////////////////////////////////////////////
PT(PandaNode) ProjectionScreen::
make_flat_mesh(const NodePath &camera) {
nassertr(!camera.is_empty() &&
camera.node()->is_of_type(LensNode::get_class_type()),
NULL);
LensNode *camera_node = DCAST(LensNode, camera.node());
nassertr(camera_node->get_lens() != (Lens *)NULL, NULL);
// First, ensure the UV's are up-to-date.
recompute_if_stale();
PT(PandaNode) top = new PandaNode(get_name());
NodePath this_np(this);
LMatrix4f rel_mat;
bool computed_rel_mat = false;
make_mesh_children(top, this_np, camera, rel_mat, computed_rel_mat);
return top;
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::recompute
// Access: Published
// Description: Recomputes all the UV's for geometry below the
// ProjectionScreen node, as if the texture were
// projected from the associated projector.
//
// This function is normally called automatically
// whenever the relevant properties change, so it should
// not normally need to be called directly by the user.
// However, it does no harm to call this if there is any
// doubt.
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
recompute() {
NodePath this_np(this);
do_recompute(this_np);
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::recompute_if_stale
// Access: Public
// Description: Calls recompute() only if the relative transform
// between the ProjectionScreen and the projector has
// changed, or if any other relevant property has
// changed.
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
recompute_if_stale() {
if (_projector_node != (LensNode *)NULL &&
_projector_node->get_lens() != (Lens *)NULL) {
UpdateSeq lens_change = _projector_node->get_lens()->get_last_change();
if (_stale || lens_change != _projector_lens_change) {
recompute();
} else {
// Get the relative transform to ensure it hasn't changed.
NodePath this_np(this);
const LMatrix4f &top_mat = this_np.get_mat(_projector);
if (!_rel_top_mat.almost_equal(top_mat)) {
_rel_top_mat = top_mat;
_computed_rel_top_mat = true;
do_recompute(this_np);
}
}
}
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::do_recompute
// Access: Private
// Description: Starts the recomputation process.
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
do_recompute(const NodePath &this_np) {
if (_projector_node != (LensNode *)NULL &&
_projector_node->get_lens() != (Lens *)NULL) {
_colors.clear();
_colors.push_back(_vignette_color);
_colors.push_back(_frame_color);
recompute_node(this_np, _rel_top_mat, _computed_rel_top_mat);
// Make sure this flag is set to false for next time.
_computed_rel_top_mat = false;
_projector_lens_change = _projector_node->get_lens()->get_last_change();
_stale = false;
}
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::recompute_node
// Access: Private
// Description: Recurses over all geometry at the indicated node and
// below, looking for GeomNodes that want to have new
// UV's computed. When a new transform space is
// encountered, a new relative matrix is computed.
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
recompute_node(const WorkingNodePath &np, LMatrix4f &rel_mat,
bool &computed_rel_mat) {
PandaNode *node = np.node();
if (node->is_geom_node()) {
recompute_geom_node(np, rel_mat, computed_rel_mat);
}
if (node->is_exact_type(SwitchNode::get_class_type())) {
// We make a special case for switch nodes only. Other kinds of
// selective child nodes, like LOD's and sequence nodes, will get
// all of their children traversed; switch nodes will only
// traverse the currently active child.
int i = DCAST(SwitchNode, node)->get_visible_child();
if (i >= 0 && i < node->get_num_children()) {
PandaNode *child = node->get_child(i);
recompute_child(WorkingNodePath(np, child), rel_mat, computed_rel_mat);
}
} else {
// A non-switch node. Recurse on all children.
int num_children = node->get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = node->get_child(i);
recompute_child(WorkingNodePath(np, child), rel_mat, computed_rel_mat);
}
}
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::recompute_child
// Access: Private
// Description: Works in conjunction with recompute_node() to recurse
// over the whole graph. This is called on each child
// of a given node.
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
recompute_child(const WorkingNodePath &np, LMatrix4f &rel_mat,
bool &computed_rel_mat) {
PandaNode *child = np.node();
const TransformState *transform = child->get_transform();
if (!transform->is_identity()) {
// This child node has a transform; therefore, we must recompute
// the relative matrix from this point.
LMatrix4f new_rel_mat;
bool computed_new_rel_mat = false;
recompute_node(np, new_rel_mat, computed_new_rel_mat);
} else {
// This child has no transform, so we can use the same transform
// space from before.
recompute_node(np, rel_mat, computed_rel_mat);
}
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::recompute_geom_node
// Access: Private
// Description: Recomputes the UV's just for the indicated GeomNode.
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
recompute_geom_node(const WorkingNodePath &np, LMatrix4f &rel_mat,
bool &computed_rel_mat) {
GeomNode *node = DCAST(GeomNode, np.node());
if (!computed_rel_mat) {
// All right, time to compute the matrix.
NodePath true_np = np.get_node_path();
rel_mat = true_np.get_mat(_projector);
computed_rel_mat = true;
}
int num_geoms = node->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
Geom *geom = node->get_geom(i);
recompute_geom(geom, rel_mat);
}
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::recompute_geom
// Access: Private
// Description: Recomputes the UV's just for the indicated Geom.
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
recompute_geom(Geom *geom, const LMatrix4f &rel_mat) {
static const LMatrix3f lens_to_uv
(0.5f, 0.0f, 0.0f,
0.0f, 0.5f, 0.0f,
0.5f, 0.5f, 1.0f);
static const LMatrix3f lens_to_uv_inverted
(0.5f, 0.0f, 0.0f,
0.0f,-0.5f, 0.0f,
0.5f, 0.5f, 1.0f);
PTA_TexCoordf uvs;
PTA_ushort color_index;
Lens *lens = _projector_node->get_lens();
nassertv(lens != (Lens *)NULL);
const LMatrix3f &to_uv = _invert_uvs ? lens_to_uv_inverted : lens_to_uv;
// Iterate through all the vertices in the Geom.
int num_vertices = geom->get_num_vertices();
Geom::VertexIterator vi = geom->make_vertex_iterator();
for (int i = 0; i < num_vertices; i++) {
const Vertexf &vert = geom->get_next_vertex(vi);
// For each vertex, project to the film plane.
LPoint2f film(0.0, 0.0);
bool good = lens->project(vert * rel_mat, film);
// Now the lens gives us coordinates in the range [-1, 1].
// Rescale these to [0, 1].
uvs.push_back(film * to_uv);
// If we have vignette color in effect, color the vertex according
// to whether it fell in front of the lens or not.
if (_vignette_on) {
color_index.push_back(good ? 1 : 0);
}
}
// Now set the UV's.
geom->set_texcoords(uvs, G_PER_VERTEX);
if (_vignette_on) {
geom->set_colors(_colors, G_PER_VERTEX, color_index);
}
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::make_mesh_node
// Access: Private
// Description: Recurses over all geometry at the indicated node and
// below, and generates a corresponding node hierarchy
// with all the geometry copied, but flattened into 2-d,
// as seen from the indicated camera. Returns the newly
// created node, or NULL if no node was created.
////////////////////////////////////////////////////////////////////
PandaNode *ProjectionScreen::
make_mesh_node(PandaNode *result_parent, const WorkingNodePath &np,
const NodePath &camera,
LMatrix4f &rel_mat, bool &computed_rel_mat) {
PandaNode *node = np.node();
if (!node->safe_to_flatten()) {
// If we can't safely flatten this node, ignore it (and all of its
// children) completely. It's got no business being here anyway.
return NULL;
}
PT(PandaNode) new_node;
if (node->is_geom_node()) {
new_node = make_mesh_geom_node(np, camera, rel_mat, computed_rel_mat);
} else {
new_node = node->make_copy();
}
// Now attach the new node to the result.
result_parent->add_child(new_node);
make_mesh_children(new_node, np, camera, rel_mat, computed_rel_mat);
return new_node;
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::make_mesh_children
// Access: Private
// Description: Walks over the list of children for the indicated
// node, calling make_mesh_node() on each one.
////////////////////////////////////////////////////////////////////
void ProjectionScreen::
make_mesh_children(PandaNode *new_node, const WorkingNodePath &np,
const NodePath &camera,
LMatrix4f &rel_mat, bool &computed_rel_mat) {
PandaNode *node = np.node();
int num_children = node->get_num_children();
for (int i = 0; i < num_children; i++) {
PandaNode *child = node->get_child(i);
PandaNode *new_child;
const TransformState *transform = child->get_transform();
if (!transform->is_identity()) {
// This child node has a transform; therefore, we must recompute
// the relative matrix from this point.
LMatrix4f new_rel_mat;
bool computed_new_rel_mat = false;
new_child = make_mesh_node(new_node, WorkingNodePath(np, child), camera,
new_rel_mat, computed_new_rel_mat);
} else {
// This child has no transform, so we can use the same transform
// space from before.
new_child = make_mesh_node(new_node, WorkingNodePath(np, child), camera,
rel_mat, computed_rel_mat);
}
// Copy all of the render state (except TransformState) to the
// new arc.
new_child->set_state(child->get_state());
}
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::make_mesh_geom_node
// Access: Private
// Description: Makes a new GeomNode, just like the given one, except
// flattened into two dimensions as seen by the
// indicated camera.
////////////////////////////////////////////////////////////////////
PT(GeomNode) ProjectionScreen::
make_mesh_geom_node(const WorkingNodePath &np, const NodePath &camera,
LMatrix4f &rel_mat, bool &computed_rel_mat) {
GeomNode *node = DCAST(GeomNode, np.node());
PT(GeomNode) new_node = new GeomNode(node->get_name());
LensNode *lens_node = DCAST(LensNode, camera.node());
if (!computed_rel_mat) {
// All right, time to compute the matrix.
NodePath true_np = np.get_node_path();
rel_mat = true_np.get_mat(camera);
computed_rel_mat = true;
}
int num_geoms = node->get_num_geoms();
for (int i = 0; i < num_geoms; i++) {
Geom *geom = node->get_geom(i);
PT(Geom) new_geom =
make_mesh_geom(geom, lens_node->get_lens(), rel_mat);
if (new_geom != (Geom *)NULL) {
new_node->add_geom(new_geom, node->get_geom_state(i));
}
}
return new_node;
}
////////////////////////////////////////////////////////////////////
// Function: ProjectionScreen::make_mesh_geom
// Access: Private
// Description: Makes a new Geom, just like the given one, except
// flattened into two dimensions as seen by the
// indicated lens. Any triangle in the original mesh
// that involves an unprojectable vertex is eliminated.
////////////////////////////////////////////////////////////////////
PT(Geom) ProjectionScreen::
make_mesh_geom(Geom *geom, Lens *lens, LMatrix4f &rel_mat) {
Geom *new_geom = geom->make_copy();
PT(Geom) result = new_geom;
PTA_Vertexf coords;
GeomBindType bind;
PTA_ushort vindex;
new_geom->get_coords(coords, bind, vindex);
PTA_Vertexf new_coords;
new_coords.reserve(coords.size());
for (int i = 0; i < (int)coords.size(); i++) {
const Vertexf &vert = coords[i];
// Project each vertex into the film plane, but use three
// dimensions so the Z coordinate remains meaningful.
LPoint3f film(0.0f, 0.0f, 0.0f);
lens->project(vert * rel_mat, film);
new_coords.push_back(film);
}
new_geom->set_coords(new_coords, bind, vindex);
return result;
}